
EFFICIENTLY MINING FREQUENT ITEMSETS
WITH COMPACT FP-TREE

QIN Liang-Xi '•^•\ LUO Ping ''^ and SHI Zhong-Zhi'
' (Key Lab of Intelligent Information Processing, Institute of Computing Technology, Chinese
Academy of Sciences, Beijing 100080)

' (Graduate School of Chinese Academy of Sciences, Beijing 100039)

^ (College of Computer and Information Engineering, Guangxi University, Manning 530004)

e-mail:(qinlx, luop, shizz}@ics.ict.ac.cn

Abstract: FP-growth algorithm is an efficient algorithm for mining frequent patterns. It
scans database only twice and does not need to generate and test the candidate
sets that is quite time consuming. The efficiency of the FP-growth algorithm
outperforms previously developed algorithms. But, it must recursively
generate huge number of conditional FP-trees that requires much more
memory and costs more time.
In this paper, we present an algorithm, CFPmine, that is inspired by several
previous works. CFPmine algorithm combines several advantages of existing
techniques. One is using constrained subtrees of a compact FP-tree to mine
frequent pattern, so that it is doesn't need to construct conditional FP-trees in
the mining process. Second is using an array-based technique to reduce the
traverse time to the CFP-tree. And an unified memeory management is also
implemented in the algorithm. The experimental evaluation shows that
CFPmine algorithm is a high performance algorithm. It outperforms Apriori,
Eclat and FP-growth and requires less memory than FP-growth.

Key words: association rule; frequent patterns; compact FP-tree

http://ict.ac.cn

398 Intelligent Information Processing II

1. INTRODUCTION

Since the association rule mining problem was introduced in [2] by
Agrawal et al, finding fi-equent patterns is always a crucial step in
association rules mining. In addition to association rules, frequent pattern is
also used in mining correlations, causality, sequential patterns, episodes,
multidimensional patterns, maximal patterns, partial periodicity, emerging
patterns and many other important data mining tasks. So, the efficiency of a
frequent pattern mining approach has a great influence to the performance of
the algorithms used in these data mining tasks. The following is a formal
statement of frequent patterns (or itemsets) mining problem:

Let / - {/,,/2,...,/^} be a set of literals, called items. Let database D be a
set of transactions, where each transaction T is a set of items such that
T ^ I. Each transaction has a unique identifier, TID. Let X be a set of
items. A transaction T is said to contain X if and only ii X ^T . The
support of a itemset X is the probability of transactions in database D that
contain X. X is frequent if the support of X is no less than a user defined
support threshold. We are interested in finding the complete frequent
itemsets.

Agrawal, et al presented Apriori algorithm in [3], in which a prior
knowledge about frequent itemsets was used. The prior knowledge is that if
an itemset is not frequent, then all of its supersets can never be frequent.
Most of previous studies adopted an Apriori-like candidate set generation-
and-test approach, such as DHP algorithm[8], Partition algorithm[9].
Sampling algorithm[10] and DIC algorithm[4]. The Apriori-like algorithms
suffer two problems: (1) It is costly to generate huge number of candidate
sets for long patterns. (2) It is quite time consuming to repeatedly scan the
database to count the support of candidate itemsets to decide which one is a
frequent pattern.

Zaki et al. presented Eclat Algorithm in [11], in which they use an itemset
clustering technique, efficient lattice traverse technique and vertical database
layout in the mining process. Agarwal et al. proposed TreeProjection
algorithm in [1], in which they represent itemsets as nodes of a lexicographic
tree and use matrices to count the support of frequent itemsets. Han, et al,
developed the FP-growth algorithm [7] that is based on frequent pattern tree.
This algorithm avoids time consuming operations such as repeated database
scans and generation of candidate set. The efficiency of the FP-growth
algorithm is about an order of magnitude faster than the Apriori algorithm
and outperforms TreeProjection algorithm. But, there still exist some aspects
in FP-growth algorithm that can be improved. For example, it needs to
recursively generate huge number of conditional FP-trees that consumes
much more memory and more time. It has appeared several improved FP-

Intelligent Information Processing II 399

growth algorithms based on original one. Fan and Li [5] presented a
constrained subtree based approach to avoid the generation of huge number
of conditional FP-trees recursively in the mining process. They also reduced
the fields in each FP-tree node. Their approach has better time and space
scalability than FP-growth algorithm. Grahne and Zhu [6] proposed an array-
based technique to reduce the time cost in FP-tree traverse. They also
implemented their own memory management for allocating and deallocating
tree nodes.

In this work, we adopts several advanced techniques which is inspired by
[5] and [6]. One is using constrained subtrees of a compact FP-tree(CFP-tree)
in the mining process, so that it doesn't need to construct conditional FP-
trees. Second is using an array-based technique to reduce the traverse time to
CFP-tree.

The remaining of the paper is organized as follows. The detailed
description of CFP-tree based approach is given in Section 2. The CFP-tree
mining algorithm is described in Section 3. In Section 4, we will give the
experimental results. And in Section 5, we will give our conclusion and the
idea about our future work.

2. COMPACT FP-TREE AND ITS CONSTRUCTION

The FP-growth algorithm [7] uses a data structure called the FP-tree. The
FP-tree is a compact representation of frequency information in a transaction
database. There are 6 fields in a FP-tree node. They are item-name, count,
parent-link, child-link, sibling-link and next-link (a pointer to next node that
has same item-name). However, child-link and sibling-link are only used in
the FP-tree constructing process, parent-link and next-link are only used in
the mining process. So we can reduce the number of fields by joining child-
link with parent-link as cp-link which is first pointing to its child-node and
after construction pointing to its parent node, and joining sibling-link with
next-link as sn-link which is first pointing to its sibling-node and finally
pointing to next node.

The compact FP-tree (CFP-tree) has similar structure as FP-tree. They
also have several differences:

(1) Each node in CFP-tree has 4 fields, item-no (which is the sequential
number of an item in frequent 1-itemsets according frequency descending
order), count, cp-Unk and sn-link. Therefore, CFP-tree requires only 2/3
memory spaces of FP-tree.

(2) FP-tree is bi-directional, but CFP-tree is single directional. After the
construction, CFP-tree only exists paths from leaves to the root.

The CFP-tree is constructed as follows.

400 Intelligent Information Processing II

Algorithm 1. (CFP-tree construction)

Input: A transaction database DB and support threshold minsup.

Output: Its CFP-tree.

Method: CFP-tree is constructed in following steps.

(1) Scan the transaction database DB once. Collect the set of frequent items
F and their supports. Sort F in support descending order as L, the list of
frequent items.

(2) Create the root of an FP-tree, T, and label it as "null". For each transaction
in DB do the following.
Select the frequent items and replace them with their order in L, and sort
them as Is. Let the sorted Is be [p|P], where p is the first element and P is
the remaining list. Call insert tree([p|P], T).

The function of insert_tree(p|P, T) is performed as follows.
(1) If T has no child or can not find a child which its item-no=p, then create

a new node N. N.item-no=p, N.count=l, N.cp-link=T; Insert N before
the first node which item-no is greater than p.
If T has a child N such that N.item-no=p, then increment N.count by 1.

(2) If P is not empty, then call insert_tree(P, N) recursively.

After the construction of CFP-tree, we should change the sn-link from
sibling-link to next-link and reverse the cp-link. The processing procedure is
as follows: Traverse the tree from the root. Add current node CN to the link
of header[CN.item-no] as the last node. If CN has no child or all of its
children and siblings have been processed then let CN.cp-link=CN's parent,
else process its children and its siblings recursively.

Figure 1 (a) shows an example of a database and Figure 1 (b) is the CFP-tree
for that database,
tid Items

1

2

3

4

5

6

7

8

9

10

abcefo

acg

ei

acdeg

acegl

ej
abcefp

acd

acegm

acegn |

fitems header

a:8
c:8
e:8
g:5
b:2
d:2
f:2

0
1
2
3
4
5
6

'-

\

' " " '

-.^

\
\

(a) (b) ^^^~.*^

Figure I. An Example of CFP-tree (minsup=20%)

Intelligent Information Processing II 401

3. CFP-TREE BASED MINING ALGORITHM

In the mining process, FP-growth algorithm must recursively generate huge
number of conditional FP-trees that requires much more memory and costs more
time. In [5], an approach that needn't to generate conditional FP-trees is
proposed. It uses constrained subtrees to mine frequent pattern directly.

3.1 Constrained subtree

Definition 1. The semi-order relation " ^ " of two patterns (itemsets) is
defined as follows: Let {a^,a2,...,a^} and {6,,Z?2 v j ^ „ } be two patterns.
{a^,a2,...,ci^} ^ {b^,b2,...,bj if and only if exist l<i<mm(m,n) ,
while l< j <i ,aj = bj , and a^ -< b. ; or while \< j <m ,aj -bj, and
m<n .

Definition 2. Let /, ^ /2 ^ -< ij^ be item orders. N is a node in the CFP-
tree. P is a sub-path from root to N. We say P is constrained by the itemset
{i^J2^---->h) ' if exist a N's descendant node M, such that /p/25...,4 appear in
the sub-path from N to M, and /j is the item-no of N's child, ẑ = M.item-no. N
is called end node of sub-path P. Node M's count c is called the base count of
constrained sub-path P.

Definition 3. In a CFP-tree, all of the sub-path constrained by itemset
{i^J2^"'^h) i^^ke up of a subtree, it is called a subtree constrained by
{z'l, /2 ,.--5 ik} ' nominated as ST(z^,..., Z2, i^).

ST(4,..., /2, /'i) can be represented by an array, let it be EndArray, that every
element of it has two fields: end-ptr (point to the end node) and base-count(store
the base count of the constrained sub-path). The frequent items and count of
ST(/^,...,/25/,) can be represented by ST(/^,...,/2,/i).fitem[] and
ST(ij^,..., ̂ 2•> i]).count[] respectively.

Figure 2 shows the constrained subtree ST(3) of the CFP-tree in Figure 1 (b).

root

fitem count

0
1

1 2

5
5
4 (

end-ptr

e-count

f 1
4

^ f
_ 1

Figure 2. The constrained subtree ST(3)

402 Intelligent Information Processing II

3.2 An array technique

The main work done in the mining process of constrained subtree-based
approach is recursively traversing a constrained subtree and generate a new
subtree. For each frequent item k in constrained subtree ST(X), two traverses
of ST(X) are needed for generate frequent items and counts of ST(X, k).
Can the traversal time be reduced? In [6], an array-based technique was
proposed to reduce the traversal time, this technique just supplies a gap of
[5]. The following example will explain the idea. In Figure 3 (a), Ao is
generated from database in Figure 1 (a) while building CFP-tree. Let the
minimum support is 20%, after first scan of the database, we sort the
frequent items as {a:8, c:8, e:8, g:5, b:2, d:2, f:2}. Let the itemset in support
descending order be Fl (let the order of first item be 0).

c 1
e 2
g 3
b 4
d 5
f 6

8
6
5
2
2
2
0

a

6
5
2
2
2
1

c

4
2
1
2
2

e

0
1
0

3

g

0
2
4

b

0
5

d

c 1
e 2

5 ,
414

0 1

a c

(a) A* (b) A„

Figure 3. Two array examples

In Ao, each cell is a counter of a 2-itemset. Because c's order is 1, a's
order is 0, cell A0[1, 0] is the counter for itemset {c, a}, and so forth. During
the second scan, the frequent items in each transaction are selected and
replaced with their order in Fl. Sort them as Is. When we insert Is into CFP-tree,
at the same time Ao[i, j] is incremented by 1 if {i, j} is contained in Is. For
example, the first transaction, {a, b, c, e, f} is selected and replaced with {0,
4, 1, 2, 6}. After sorted, the set becomes {0, 1, 2, 4, 6}, so A0[1,O], Acp[2,0],
Ao[2,l], A44,0], Ao[4,l], Ao[4,2], Ao[6,0], Ao[6,l], Ao[6,2], Ao[6,4] are
all incremented by 1. After second scan, array keeps the counts of all pairs of
frequent items, as shown in Figure 2 (a).

While generating the constrained subtree of some item k, instead of
traversing CFP-tree, now we can get the frequent items of subtree from the array
Ao. For example, by checking the third line in the table for Ao, frequent items a,
c, e and their counts can be obtained from g's constrained subtree ST(2).

It is just the same as CFP-tree, during the generation of a new constrained
subtree ST(X, k), the array Axu(k} is filled. For example, the cells of array
A(g} is shown in Figure 2 (b).

Intelligent Information Processing II 403

3.3 CFPmine Algorithm

From the analysis of above, we can give a new algorithm CFPmine based
on constrained subtree and array-based technique. The following is the
pseudocode of CFPmine. CFPmine is a main procedure, it output frequent 1-
itemset and generate constrained subtree that has only one constraint item,
then call mine procedure to generate frequent itemsets that have more than
one item. The most work of mining is done by mine procedure.

Procedure CFPmine(T)
Input: ACFP-treeT
Output: The complete set of FI's corresponding to T
Method:
(1) patlen=l;
(2) for (k=flen-l; k>=0; k -) { // flen is the length of frequent itemset
(3) pat[0]=fitem[k];
(4) output { pat[0]} with support count[k];
(5) generate ST(k).EndArray[];
(6) mine(ST(k));

}

Procedure mine(ST(/^,..., /2, /j))

{
(1) generate ST(/^,...,/2 5 0-fitem[] and ST(/^,...,Z2,/^).count[], let the

length be listlen;
(2) if (listlen==0) then return;
(3) if (listlen==l) then {pat[patlen]= ST(4,...,/2,z,).fitem[0];

output pat with support ST(/^,..., /2, i^).count[0]; return}
(4) if ST(/^,..., 2̂ 5 h) has only single path then

{ output pat U all the combination of ST(/^,..., /2, /j).fitem[];
return; }

(5) patlen++;
(6) for(k=list len-l ;k>-0;k-) {
(7) generate array;
(8) generate ST(/^,..., 12, / j , A:).EndArray[];
(9) if ST(4,...,Z2,^p^).EndArray[] is not NULL then

mine(ST(^ , . . . , /2 ? 1̂ ? ^))j

(10)}
(11) patlen-;

}

404 Intelligent Information Processing II

In mine procedure, line 1 generate frequent itemset in the constrained
subtree ST(/^,...,/2 5/|). Line 2-̂ 3 process the condition while hstlen is 0 or 1.
Line 4 process the condition while constrained subtree has only single path.
Line ö'-̂ lO generate new array and constrained subtree, then mine the new
subtree.

Because the CFP-tree could have millions of nodes, thus, it takes plenty
of time for allocating and deallocating the nodes. Just like [6], we also
implement unified memory management for CFPmine algorithm. In the
recursively mining process, the memory used in it is not frequently allocated
and freed. It allocating a large chunk before the first recursion, and when a
recursion ends, it doesn't really free the memory, only changes the available
size of chunk. If the chunk is used up, it allocates more memory. And it frees
the memory only when all the recursions have been finished.

4. EXPERIMENTAL EVALUATION

In this section, we present a performance comparison of CFPmine
algorithm with Apriori, Eclat and FP-growth. The experiments were done on
IGhz Pentium III PC with 384MB main memery, running Windows 2000
professional.The source codes of Apriori and Eclat are provided by Christian
Borgelt [12]. Thereinto, Apriori algorithm uses many optimizing techniques
to improve the efficiency, such as it doesn't scan the database for many
times and it uses a transaction tree to count the support of candidate sets. So,
the Apiori here is much faster than the original one. The source code of FP-
growth is provided by Bart Goethals [13], All of these three algorithms are
run in Cygwin environment. CFPmine algorithm is coded in Microsoft
Visual C-f+ 6.0. All the times in the Figures refer to the running time from
read data to the frequent patterns have been mined, but excluding the result
writing time.

We ran all algorithms on two datasets. T25I20D100K, a synthetic dataset,
is from IBM Almaden Research Center [14], It has 100k transactions, 10k
different items, and the average transaction length is 25, Connect-4 is a
dense dataset. It is from UCI Machine Learning Repository [15]. It has
67557 transactions, 130 different items, and the average transaction length is
43. All of the algorithms get the same frequent itemsets for the same dataset
under the same minimum support threshold.

Figure 4 gives the running time of the four algorithms on dataset
T25I20D100K. It shows the performance is that CFPmine)̂ Apriori :̂ FP-
growth >- Eclat. Thereinto, CFPmine is above five times faster than FP-
growth. Figure 5 gives the running time of the four algorithms on dataset
Connect-4 (The time plots in Figure 5 are on a logarithmic scale). It shows

Intelligent Information Processing II 405

the performance is that CFPmine >- FP-growth y Eclat >- Apriori (while
support > 65%, Apriori:^Eclat). Thereinto, CFPmine is a magnitude faster
than FP-growth.

350

300 [

250

: 200

100

50

oL

• ' ^

. \

• \

• \

^ > v . . Ö..

-^- Apriori
- e Eclat
-^7 FP-growth
- B - CFPmine

1 ^ : = = = ^
0.5 1 1.5

Min Support (%)

- 10"

1 •¥

X

1 . . "̂̂

--+" Apriori Ü
- 0 Eclat]

- B - CFPmine ||

'30 40 50 60 70 80 90
Min Support (%)

Figure 4. [Running time on T25I20D100K] Figure 5. [Running time on Connect-4]

Discussion: From the figures, we can see that CFPmine is the most
efficient algorithm in four algorithms. It also shows that the techniques used
in CFPmine is effective. CFPmine algorithm has higher performance than
FP-growth on the scale of either time or space. Apriori, Eclat and FP-growth
have different efficiency on different dataset. It is because that: (1) The
characters of two datasets is different. T25I20D100K is a sparse dataset, and
Connect-4 is a dense dataset. (2) Each algorithm takes different data
structure and mining strategy. The optimized Apriori is more efficient than
FP-growth on sparse dataset, but FP-growth is more efficient than Apriori on
dense dataset. It is because that Apriori uses a breadth-first strategy in the
mining process, when the dataset is dense, the number of combinations
grows fast makes it become less efficient. But the high compressed tree
structure and the divide-and-conquer strategy make CFPmine and FP-growth
efficient on dense datasets. Eclat uses a vertical representation of dataset. It
is low performance on sparse dataset, and is relatively efficient only while
the dataset is dense and has little items.

5. CONCLUSIONS

We have introduced a new algorithm, CFPmine. It is inspired by several
previous works, CFPmine algorithm combines several advantages of existing
techniques. One is using constrained subtrees of a compact FP-tree to mine
frequent pattern, so that it is doesn't need to construct conditional FP-trees in
the mining process. Second is using an array-based technique to reduce the
traverse time to the CFP-tree. And an unified memeory management is also

406 Intelligent Information Processing II

implemented in the algorithm. The experimental evaluation shows that
CFPmine algorithm is a high performance algorithm. It outperforms Apriori,
Eclat and FP-growth and requires less memory than FP-growth.

ACKNOWLEDGEMENTS

This work is supported by the National Natural Science Foundation of
China.(Grant No. 90104021,60173017)

REFERENCES

1. Agarwal R C, Aggarwal C C, and Prasad V V V. A Tree Projection Algorithm for
Generation of Frequent Itemsets. Journal of Parallel and Distributed Computing, 2001.

2. Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large
database. In Proc of 1993 ACM SIGMOD Conf on Management of Data, 207-216,
Washington DC, May 1993.

3. Agrawal R, Srikant R. Fast algorithms for mining association rules. In Proc of the 20̂*̂ Int'l
Conf on Very Large DataBases (VLDB'94). 487-499. Santiago, Chile, Sept. 1994.

4. Brin S, Motwani R, Ullman J D, and Tsur S. Dynamic itemset counting and implication
rules for market basket data. In SIGMOD Record (ACM Special Interest Group on
Management of Data), 26(2):255, 1997

5. FAN Ming, LI Chuan. Mining frequent patterns in an FP-tree without conditional FP-tree
generation(ln Chinese). Journal of computer research and development, 40(8): 1216-1222.
2003.

6. Grahne G, Zhu J. Efficiently using prefix-trees in mining frequent itemsets. In: First
Workshop on Frequent Itemset Mining Implementation (FIMr03). Melbourne, FL

7. Han J, Pei J, and Yin Y. Mining Frequent Patterns without Candidate Generation. In Proc
of 2000 ACM-SIGMOD Int'l Conf on Management of Data (SIGMOD'OO). 1-12. Dallas,
TX, 2000.

8. Park J S, Chen M-S and Yu P S. An Effective Hash-based Algorithm for Mining
Association Rules. In: Proc of 1995 ACM-SIGMOD int'l Conf on Management of Data
(SIGMOD'95). San Jose, CA, 1995. 175-186.

9. Savasere A, Omiecinski E, Navathe S. An efficient Algorithm for Mining Association
Rules in Large Databases, In Proc of 21̂ ^ Int'l Conf on Very Large Databases (VLDB'95),
pages 432-443. Zurich, Switzerland, Sept. 1995.

lO.Toivonen H. Sampling Large Databases for Association Rules. In Proc of 22nd Int'l Conf
on Very Large Databases (VLDB'96). pages 134-145. Bombay, India, Sept. 1996.

11. Zaki M, Parthasarathy S, Ogihara M, and Li W. New algorithms for fast discovery of
association rules. In Heckerman D, Mannila H, Pregibon D, and Uthurusamy R eds, Proc
of the Third International Conference on Knowledge Discovery and Data Mining (KDD-
97), page 283. AAAI Press, 1997. http://citeseer.ist.psu.edu/zaki97new.html

12. http://fuzzy.cs.uni-magdeburg.de/-borgelt/
13. http://www.cs.helsinki.fl/u/goethals/
14. http://www.almaden.ibm.com/software quest/Resources/datasets/syndata.html
15. http://www.ics.uci.edu/-mleam/MLRepository.html

http://citeseer.ist.psu.edu/zaki97new.html
http://fuzzy.cs.uni-magdeburg.de/-borgelt/
http://www.cs.helsinki.fl/u/goethals/
http://www.almaden.ibm.com/software
http://www.ics.uci.edu/-mleam/MLRepository.html

