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Abstract: FP-growth algorithm is an efficient algorithm for mining frequent patterns. It 
scans database only twice and does not need to generate and test the candidate 
sets that is quite time consuming. The efficiency of the FP-growth algorithm 
outperforms previously developed algorithms. But, it must recursively 
generate huge number of conditional FP-trees that requires much more 
memory and costs more time. 
In this paper, we present an algorithm, CFPmine, that is inspired by several 
previous works. CFPmine algorithm combines several advantages of existing 
techniques. One is using constrained subtrees of a compact FP-tree to mine 
frequent pattern, so that it is doesn't need to construct conditional FP-trees in 
the mining process. Second is using an array-based technique to reduce the 
traverse time to the CFP-tree. And an unified memeory management is also 
implemented in the algorithm. The experimental evaluation shows that 
CFPmine algorithm is a high performance algorithm. It outperforms Apriori, 
Eclat and FP-growth and requires less memory than FP-growth. 
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1. INTRODUCTION 

Since the association rule mining problem was introduced in [2] by 
Agrawal et al, finding fi-equent patterns is always a crucial step in 
association rules mining. In addition to association rules, frequent pattern is 
also used in mining correlations, causality, sequential patterns, episodes, 
multidimensional patterns, maximal patterns, partial periodicity, emerging 
patterns and many other important data mining tasks. So, the efficiency of a 
frequent pattern mining approach has a great influence to the performance of 
the algorithms used in these data mining tasks. The following is a formal 
statement of frequent patterns (or itemsets) mining problem: 

Let / - {/,,/2,...,/^} be a set of literals, called items. Let database D be a 
set of transactions, where each transaction T is a set of items such that 
T ^ I. Each transaction has a unique identifier, TID. Let X be a set of 
items. A transaction T is said to contain X if and only ii X ^T . The 
support of a itemset X is the probability of transactions in database D that 
contain X. X is frequent if the support of X is no less than a user defined 
support threshold. We are interested in finding the complete frequent 
itemsets. 

Agrawal, et al presented Apriori algorithm in [3], in which a prior 
knowledge about frequent itemsets was used. The prior knowledge is that if 
an itemset is not frequent, then all of its supersets can never be frequent. 
Most of previous studies adopted an Apriori-like candidate set generation-
and-test approach, such as DHP algorithm[8], Partition algorithm[9]. 
Sampling algorithm[10] and DIC algorithm[4]. The Apriori-like algorithms 
suffer two problems: (1) It is costly to generate huge number of candidate 
sets for long patterns. (2) It is quite time consuming to repeatedly scan the 
database to count the support of candidate itemsets to decide which one is a 
frequent pattern. 

Zaki et al. presented Eclat Algorithm in [11], in which they use an itemset 
clustering technique, efficient lattice traverse technique and vertical database 
layout in the mining process. Agarwal et al. proposed TreeProjection 
algorithm in [1], in which they represent itemsets as nodes of a lexicographic 
tree and use matrices to count the support of frequent itemsets. Han, et al, 
developed the FP-growth algorithm [7] that is based on frequent pattern tree. 
This algorithm avoids time consuming operations such as repeated database 
scans and generation of candidate set. The efficiency of the FP-growth 
algorithm is about an order of magnitude faster than the Apriori algorithm 
and outperforms TreeProjection algorithm. But, there still exist some aspects 
in FP-growth algorithm that can be improved. For example, it needs to 
recursively generate huge number of conditional FP-trees that consumes 
much more memory and more time. It has appeared several improved FP-
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growth algorithms based on original one. Fan and Li [5] presented a 
constrained subtree based approach to avoid the generation of huge number 
of conditional FP-trees recursively in the mining process. They also reduced 
the fields in each FP-tree node. Their approach has better time and space 
scalability than FP-growth algorithm. Grahne and Zhu [6] proposed an array-
based technique to reduce the time cost in FP-tree traverse. They also 
implemented their own memory management for allocating and deallocating 
tree nodes. 

In this work, we adopts several advanced techniques which is inspired by 
[5] and [6]. One is using constrained subtrees of a compact FP-tree(CFP-tree) 
in the mining process, so that it doesn't need to construct conditional FP-
trees. Second is using an array-based technique to reduce the traverse time to 
CFP-tree. 

The remaining of the paper is organized as follows. The detailed 
description of CFP-tree based approach is given in Section 2. The CFP-tree 
mining algorithm is described in Section 3. In Section 4, we will give the 
experimental results. And in Section 5, we will give our conclusion and the 
idea about our future work. 

2. COMPACT FP-TREE AND ITS CONSTRUCTION 

The FP-growth algorithm [7] uses a data structure called the FP-tree. The 
FP-tree is a compact representation of frequency information in a transaction 
database. There are 6 fields in a FP-tree node. They are item-name, count, 
parent-link, child-link, sibling-link and next-link (a pointer to next node that 
has same item-name). However, child-link and sibling-link are only used in 
the FP-tree constructing process, parent-link and next-link are only used in 
the mining process. So we can reduce the number of fields by joining child-
link with parent-link as cp-link which is first pointing to its child-node and 
after construction pointing to its parent node, and joining sibling-link with 
next-link as sn-link which is first pointing to its sibling-node and finally 
pointing to next node. 

The compact FP-tree (CFP-tree) has similar structure as FP-tree. They 
also have several differences: 

(1) Each node in CFP-tree has 4 fields, item-no (which is the sequential 
number of an item in frequent 1-itemsets according frequency descending 
order), count, cp-Unk and sn-link. Therefore, CFP-tree requires only 2/3 
memory spaces of FP-tree. 

(2) FP-tree is bi-directional, but CFP-tree is single directional. After the 
construction, CFP-tree only exists paths from leaves to the root. 

The CFP-tree is constructed as follows. 
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Algorithm 1. (CFP-tree construction) 

Input: A transaction database DB and support threshold minsup. 

Output: Its CFP-tree. 

Method: CFP-tree is constructed in following steps. 

(1) Scan the transaction database DB once. Collect the set of frequent items 
F and their supports. Sort F in support descending order as L, the list of 
frequent items. 

(2) Create the root of an FP-tree, T, and label it as "null". For each transaction 
in DB do the following. 
Select the frequent items and replace them with their order in L, and sort 
them as Is. Let the sorted Is be [p|P], where p is the first element and P is 
the remaining list. Call insert tree([p|P], T). 

The function of insert_tree(p|P, T) is performed as follows. 
(1) If T has no child or can not find a child which its item-no=p, then create 

a new node N. N.item-no=p, N.count=l, N.cp-link=T; Insert N before 
the first node which item-no is greater than p. 
If T has a child N such that N.item-no=p, then increment N.count by 1. 

(2) If P is not empty, then call insert_tree(P, N) recursively. 

After the construction of CFP-tree, we should change the sn-link from 
sibling-link to next-link and reverse the cp-link. The processing procedure is 
as follows: Traverse the tree from the root. Add current node CN to the link 
of header[CN.item-no] as the last node. If CN has no child or all of its 
children and siblings have been processed then let CN.cp-link=CN's parent, 
else process its children and its siblings recursively. 

Figure 1 (a) shows an example of a database and Figure 1 (b) is the CFP-tree 
for that database, 
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Figure I. An Example of CFP-tree (minsup=20%) 
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3. CFP-TREE BASED MINING ALGORITHM 

In the mining process, FP-growth algorithm must recursively generate huge 
number of conditional FP-trees that requires much more memory and costs more 
time. In [5], an approach that needn't to generate conditional FP-trees is 
proposed. It uses constrained subtrees to mine frequent pattern directly. 

3.1 Constrained subtree 

Definition 1. The semi-order relation " ^ " of two patterns (itemsets) is 
defined as follows: Let {a^,a2,...,a^} and {6,,Z?2 v j ^ „ } be two patterns. 
{a^,a2,...,ci^} ^ {b^,b2,...,bj if and only if exist l<i<mm(m,n) , 
while l< j <i ,aj = bj , and a^ -< b. ; or while \< j <m ,aj -bj, and 
m<n . 

Definition 2. Let /, ^ /2 ^ -< ij^ be item orders. N is a node in the CFP-
tree. P is a sub-path from root to N. We say P is constrained by the itemset 
{i^J2^---->h) ' if exist a N's descendant node M, such that /p/25...,4 appear in 
the sub-path from N to M, and /j is the item-no of N's child, ẑ  = M.item-no. N 
is called end node of sub-path P. Node M's count c is called the base count of 
constrained sub-path P. 

Definition 3. In a CFP-tree, all of the sub-path constrained by itemset 
{i^J2^"'^h) i^^ke up of a subtree, it is called a subtree constrained by 
{z'l, /2 ,.--5 ik} ' nominated as ST( z^,..., Z2, i^). 

ST(4,..., /2, /'i) can be represented by an array, let it be EndArray, that every 
element of it has two fields: end-ptr (point to the end node) and base-count(store 
the base count of the constrained sub-path). The frequent items and count of 
ST( /^,...,/25/, ) can be represented by ST( /^,...,/2,/i ).fitem[] and 
ST( ij^,..., ̂ 2•> i] ).count[] respectively. 

Figure 2 shows the constrained subtree ST(3) of the CFP-tree in Figure 1 (b). 
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Figure 2. The constrained subtree ST(3) 
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3.2 An array technique 

The main work done in the mining process of constrained subtree-based 
approach is recursively traversing a constrained subtree and generate a new 
subtree. For each frequent item k in constrained subtree ST(X), two traverses 
of ST(X) are needed for generate frequent items and counts of ST(X, k). 
Can the traversal time be reduced? In [6], an array-based technique was 
proposed to reduce the traversal time, this technique just supplies a gap of 
[5]. The following example will explain the idea. In Figure 3 (a), Ao is 
generated from database in Figure 1 (a) while building CFP-tree. Let the 
minimum support is 20%, after first scan of the database, we sort the 
frequent items as {a:8, c:8, e:8, g:5, b:2, d:2, f:2}. Let the itemset in support 
descending order be Fl (let the order of first item be 0). 
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Figure 3. Two array examples 

In Ao, each cell is a counter of a 2-itemset. Because c's order is 1, a's 
order is 0, cell A0[1, 0] is the counter for itemset {c, a}, and so forth. During 
the second scan, the frequent items in each transaction are selected and 
replaced with their order in Fl. Sort them as Is. When we insert Is into CFP-tree, 
at the same time Ao[i, j] is incremented by 1 if {i, j} is contained in Is. For 
example, the first transaction, {a, b, c, e, f} is selected and replaced with {0, 
4, 1, 2, 6}. After sorted, the set becomes {0, 1, 2, 4, 6}, so A0[1,O], Acp[2,0], 
Ao[2,l], A44,0], Ao[4,l], Ao[4,2], Ao[6,0], Ao[6,l], Ao[6,2], Ao[6,4] are 
all incremented by 1. After second scan, array keeps the counts of all pairs of 
frequent items, as shown in Figure 2 (a). 

While generating the constrained subtree of some item k, instead of 
traversing CFP-tree, now we can get the frequent items of subtree from the array 
Ao. For example, by checking the third line in the table for Ao, frequent items a, 
c, e and their counts can be obtained from g's constrained subtree ST(2). 

It is just the same as CFP-tree, during the generation of a new constrained 
subtree ST(X, k), the array Axu(k} is filled. For example, the cells of array 
A(g} is shown in Figure 2 (b). 



Intelligent Information Processing II 403 

3.3 CFPmine Algorithm 

From the analysis of above, we can give a new algorithm CFPmine based 
on constrained subtree and array-based technique. The following is the 
pseudocode of CFPmine. CFPmine is a main procedure, it output frequent 1-
itemset and generate constrained subtree that has only one constraint item, 
then call mine procedure to generate frequent itemsets that have more than 
one item. The most work of mining is done by mine procedure. 

Procedure CFPmine(T) 
Input: ACFP-treeT 
Output: The complete set of FI's corresponding to T 
Method: 
(1) patlen=l; 
(2) for (k=flen-l; k>=0; k - ) { // flen is the length of frequent itemset 
(3) pat[0]=fitem[k]; 
(4) output { pat[0]} with support count[k]; 
(5) generate ST(k).EndArray[]; 
(6) mine(ST(k)); 

} 

Procedure mine(ST( /^,..., /2, /j)) 

{ 
(1) generate ST(/^,...,/2 5 0-fitem[] and ST(/^,...,Z2,/^ ).count[], let the 

length be listlen; 
(2) if (listlen==0 ) then return; 
(3) if (listlen==l) then {pat[patlen]= ST(4,...,/2,z, ).fitem[0]; 

output pat with support ST( /^,..., /2, i^ ).count[0]; return} 
(4) if ST( /^,..., 2̂ 5 h ) has only single path then 

{ output pat U all the combination of ST( /^,..., /2, /j ).fitem[]; 
return; } 

(5) patlen++; 
(6) for(k=list len-l ;k>-0;k-) { 
(7) generate array; 
(8) generate ST(/^,..., 12, / j , A: ).EndArray[]; 
(9) if ST(4,...,Z2,^p^).EndArray[] is not NULL then 

mine(ST( ^ , . . . , /2 ? 1̂ ? ^ ))j 

(10)} 
(11) patlen-; 

} 
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In mine procedure, line 1 generate frequent itemset in the constrained 
subtree ST(/^,...,/2 5/|). Line 2-̂ 3 process the condition while hstlen is 0 or 1. 
Line 4 process the condition while constrained subtree has only single path. 
Line ö'-̂ lO generate new array and constrained subtree, then mine the new 
subtree. 

Because the CFP-tree could have millions of nodes, thus, it takes plenty 
of time for allocating and deallocating the nodes. Just like [6], we also 
implement unified memory management for CFPmine algorithm. In the 
recursively mining process, the memory used in it is not frequently allocated 
and freed. It allocating a large chunk before the first recursion, and when a 
recursion ends, it doesn't really free the memory, only changes the available 
size of chunk. If the chunk is used up, it allocates more memory. And it frees 
the memory only when all the recursions have been finished. 

4. EXPERIMENTAL EVALUATION 

In this section, we present a performance comparison of CFPmine 
algorithm with Apriori, Eclat and FP-growth. The experiments were done on 
IGhz Pentium III PC with 384MB main memery, running Windows 2000 
professional.The source codes of Apriori and Eclat are provided by Christian 
Borgelt [12]. Thereinto, Apriori algorithm uses many optimizing techniques 
to improve the efficiency, such as it doesn't scan the database for many 
times and it uses a transaction tree to count the support of candidate sets. So, 
the Apiori here is much faster than the original one. The source code of FP-
growth is provided by Bart Goethals [13], All of these three algorithms are 
run in Cygwin environment. CFPmine algorithm is coded in Microsoft 
Visual C-f+ 6.0. All the times in the Figures refer to the running time from 
read data to the frequent patterns have been mined, but excluding the result 
writing time. 

We ran all algorithms on two datasets. T25I20D100K, a synthetic dataset, 
is from IBM Almaden Research Center [14], It has 100k transactions, 10k 
different items, and the average transaction length is 25, Connect-4 is a 
dense dataset. It is from UCI Machine Learning Repository [15]. It has 
67557 transactions, 130 different items, and the average transaction length is 
43. All of the algorithms get the same frequent itemsets for the same dataset 
under the same minimum support threshold. 

Figure 4 gives the running time of the four algorithms on dataset 
T25I20D100K. It shows the performance is that CFPmine )̂  Apriori :̂  FP-
growth >- Eclat. Thereinto, CFPmine is above five times faster than FP-
growth. Figure 5 gives the running time of the four algorithms on dataset 
Connect-4 (The time plots in Figure 5 are on a logarithmic scale). It shows 
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the performance is that CFPmine >- FP-growth y Eclat >- Apriori (while 
support > 65%, Apriori:^Eclat). Thereinto, CFPmine is a magnitude faster 
than FP-growth. 
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Figure 4. [Running time on T25I20D100K] Figure 5. [Running time on Connect-4] 

Discussion: From the figures, we can see that CFPmine is the most 
efficient algorithm in four algorithms. It also shows that the techniques used 
in CFPmine is effective. CFPmine algorithm has higher performance than 
FP-growth on the scale of either time or space. Apriori, Eclat and FP-growth 
have different efficiency on different dataset. It is because that: (1) The 
characters of two datasets is different. T25I20D100K is a sparse dataset, and 
Connect-4 is a dense dataset. (2) Each algorithm takes different data 
structure and mining strategy. The optimized Apriori is more efficient than 
FP-growth on sparse dataset, but FP-growth is more efficient than Apriori on 
dense dataset. It is because that Apriori uses a breadth-first strategy in the 
mining process, when the dataset is dense, the number of combinations 
grows fast makes it become less efficient. But the high compressed tree 
structure and the divide-and-conquer strategy make CFPmine and FP-growth 
efficient on dense datasets. Eclat uses a vertical representation of dataset. It 
is low performance on sparse dataset, and is relatively efficient only while 
the dataset is dense and has little items. 

5. CONCLUSIONS 

We have introduced a new algorithm, CFPmine. It is inspired by several 
previous works, CFPmine algorithm combines several advantages of existing 
techniques. One is using constrained subtrees of a compact FP-tree to mine 
frequent pattern, so that it is doesn't need to construct conditional FP-trees in 
the mining process. Second is using an array-based technique to reduce the 
traverse time to the CFP-tree. And an unified memeory management is also 
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implemented in the algorithm. The experimental evaluation shows that 
CFPmine algorithm is a high performance algorithm. It outperforms Apriori, 
Eclat and FP-growth and requires less memory than FP-growth. 
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