
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial


Aut
ho

r's
   

pe
rs

on
al

   
co

py

J. Parallel Distrib. Comput. 67 (2007) 695– 714
www.elsevier.com/locate/jpdc

A revisit of fast greedy heuristics for mapping a class of independent tasks
onto heterogeneous computing systems

Ping Luoa,∗, Kevin Lüb, Zhongzhi Shia

aKey Laboratary of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, No. 6 Kexueyuan Nanlu,
Beijing 100080, China

bBrunel University, Uxbridge UB8 3PH, UK

Received 3 March 2006; received in revised form 27 October 2006; accepted 7 March 2007
Available online 15 March 2007

Abstract

Mixed-machine heterogeneous computing (HC) environments utilize a distributed suite of different high-performance machines, interconnected
with high-speed links, to perform groups of computing-intensive applications that have diverse computational requirements and constraints.
The problem of optimally mapping a class of independent tasks onto the machines of an HC environment has been proved, in general, to be
NP-complete, thus requiring the development of heuristic techniques for practical usage. If the mapping has real-time requirements such that
the mapping process is performed during task execution, fast greedy heuristics must be adopted. This paper investigates fast greedy heuristics
for this problem and identifies the importance of the concept of task consistency in designing this mapping heuristic. We further propose task
priority graph based fast greedy heuristics, which consider the factors of both task consistency and machine consistency (the same concept
of consistency as in previous studies). A collection of 20 greedy heuristics, including 17 newly proposed ones, are implemented, analyzed,
and systematically compared within a uniform model of task execution time. This model is implemented by the coefficient-of-variation based
method. The experimental results illuminate the circumstances when a specific greedy heuristic would outperform the other 19 greedy heuristics.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Mixed-machine heterogeneous computing (HC) environ-
ments utilize a distributed suite of different high-performance
machines, interconnected with high-speed links, to perform
groups of computing-intensive applications that have diverse
computational requirements and constraints [2]. The mapping
heuristic, responsible for optimally mapping these tasks onto
the machines of a distributed HC environment, is closely
related to the performance of this computing system and
has drawn a great deal of attention [2,14–17,7,11]. Mapping
heuristics are also important in fields, such as computational
grids [5] and parallel program scheduling [9,10].
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According to the type of tasks being mapped, the heuris-
tics can be classified into two types: mapping a class of
independent (non-communicating) jobs [2,14,15,17] and map-
ping a directed acyclic graph (DAG) composed of commu-
nicating jobs [7,16,11]. The former type of mapping heuris-
tics can be used in the latter mapping problems [16,12], and
are the research focus of this paper. The goal of mapping
a set of independent jobs onto HC systems is to minimize
the time until the last job finishes (i.e. the makespan). The
formal definition of this problem is given in the following
subsection.

1.1. Problem definition

Provided the independent tasks vector T = (t1, . . . , tp), the
heterogeneous machines vector M = (m1, . . . , mq), and the
ETC (expected time to compute) matrix E = [eij ]p×q , in which
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eij represents the expected execution time of task ti on machine
mj . 1 It is also assumed that each machine executes a single
task at a time. The problem is to find a task mapping scheme
which minimizes the makespan of all the tasks in T.

More formally, let � = {T1, . . . , Tq} be a q-element parti-
tion (a set of ordered objects at this time) of T, representing a
mapping scheme where Tj is the set of tasks assigned to host
j, for 1�j �q. The makespan of � is

ct (�) = max
1� j �q

lj

where lj = ∑
i∈Tj

eij is the completion time of all the tasks on
host j. The objective is to find the best mapping scheme �min
with the minimal makespan, such that

ct (�min) = min
�∈q-PART(T )

ct (�),

where q-PART(T) is the set of all q-element partitions of T.

1.2. The state-of-the-art of this problem

This is a problem of combinatorial optimization. It is clear
that |q-PART(T )| = qp when |T | = p and |M| = q. To ob-
tain the optimal solution, all the elements in q-PART(T) must
be checked. The general problem of optimally mapping inde-
pendent tasks to machines in a HC suite has been shown to be
(weakly) NP-complete [4,6]. To address this problem, a num-
ber of heuristics have been proposed and can be categorized
into fast and slow algorithms according to the time it takes to
obtain the sub-optimal solution. Slow heuristics, such as by ant
optimization [15] and by genetic algorithm [19], take a signif-
icantly longer time than fast heuristics [2], however, they aim
to find better solutions.

In [2] 11 heuristics are compared and it is concluded that the
fast greedy heuristic min–min performs well in comparison to
the other techniques. Paper [15] reports that the technique of
ant optimization outperforms min–min and genetic algorithm at
the expense of a much longer mapping process. Some generic
post-optimization techniques have also been proposed [14,16]
to perform a local search around a mapping scheme obtained by
existing heuristics. However, only fast greedy heuristics can be
adopted in the following situations, where the mapping process
is performed during the execution of the mapped tasks.

• When an HC system is constructed as an application ser-
vice provider to respond to online computational requests,
the waiting tasks can be scheduled in a batch mode in or-
der to increase the system utilization ratio. They are not
mapped onto the machines once they arrive; instead they are
collected into a meta-task [13] that is examined for map-
ping at pre-specified time intervals. In this situation, although
a time-consuming heuristic can achieve a shorter mapping
makespan, the much longer mapping process would post-
pone the eventual task completion-time, which must be for-
bidden if these tasks have real-time constraints. Thus, this

1 How to get this ETC matrix is within another research field, i.e. execution
time estimation model for tasks [8].

problem can only be addressed by effective fast greedy map-
ping heuristics.

• The DAG mapping problem in HC systems can be based
upon mapping multiple groups of independent tasks [16,12].
The mapping process is performed during the execution of
the early mapped tasks. Thus, fast greedy heuristics are also
the only choice in this situation.

In this paper we investigate fast greedy heuristics for mapping
a class of independent tasks onto HC systems. We introduce
the concept of task consistency and find that this trait is sig-
nificant in distinguishing the full functions of different map-
ping heuristics. A collection of 20 fast greedy heuristics, most
of which are proposed in this paper, are analyzed and com-
pared systematically within a uniform model of task execution
time. This model is implemented by the coefficient-of-variation
(COV) based method [1]. In this model of task execution time,
task consistency in addition to the other three previous param-
eters of machine consistency (the same concept of consistency
in [2]), task heterogeneity and machine heterogeneity are used
to characterize different HC environments and computational
tasks. The main experimental result is that one of the proposed
fast greedy heuristics TPD↓–minCT–minCT with the support
of a task priority graph outperforms the other heuristics, in-
cluding min–min, in most situations.

The remainder of this paper is organized as follows. Sec-
tion 2 provides some basic definitions, including the new con-
cept of task consistency, and the motivation for the new greedy
heuristic proposed in this paper. Section 3 describes 20 greedy
heuristics, which can be categorized into two classes: with and
without the support of a task priority graph. The task execu-
tion time model with a new parameter of task consistency is
presented in Section 4. Section 5 lists and analyzes the exper-
imental results of all the 20 greedy heuristics in all cases of
different parameters for the task execution time model. The
conclusions are given in Section 6.

2. Basic definitions and motivation

2.1. Task consistency in execution time model for HC

To the best of our knowledge, all previous studies in this
area have only considered machine consistency of an ETC. The
factor of task consistency, as we define it in the following, has
not been considered, and neither has the impact of how this
factor would affect the performance of fast greedy heuristics
been investigated.

Definition 2.1 (Machine consistency). Assume the indepen-
dent tasks vector be T = (t1, . . . , tp), the heterogeneous
machines vector be M = (m1, . . . , mq), the ETC matrix be
E = [eij ]p×q . The machine consistency relationship between
two machines is described as a partial order 〈M, �′〉 such that

mk�′ml iff eik �eil for 1� i�p. (1)

Definition 2.2 (Task consistency). Assume the independent
tasks vector be T = (t1, . . . , tp), the heterogeneous machines
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Fig. 1. Different types of consistency in an ETC.

vector be M = (m1, . . . , mq), the ETC matrix be E =
[eij ]p×q . The task consistency relationship between two tasks
is described as the following partial order 〈T , �〉 such that

tk�tl iff ekj �elj for 1�j �q. (2)

The concepts behind machine consistency and task consistency
are machine speed and task effort, respectively. mk�′ml means
that the speed of machine l is faster than that of machine k
when executing the tasks in the tasks vector, and tk�tl means
that the task effort of tl is always bigger than that of tk on
each machine in the HC suite. Ideally, the concept of machine
speed is constant regardless of which task it executes while the
concept of task effort is constant regardless of which machine
the task is executed on.

Task consistency occurs widely in practice when the com-
putational types of two tasks are identical. Task computational
types include readily parallelizable tasks, difficult to parallelize
tasks, tasks that are floating point intensive, simple text format-
ting tasks, etc. [1]. If the runtime of a task is shorter than that
of another task of the same computational type, the task effort
of the former task is less than that of the latter. Thus the former
task has a shorter execution time on any machine in the HC
suite. In this situation, task consistency occurs. On the other
hand, machine consistency occurs when two hosts in the HC
suite have the same machine architecture [1]. Fig. 1 describes
the different types of consistency in an ETC. When the ma-
chine architectures are the same (quadrant I and IV), machine
consistency exists. When the computational type of tasks is the
same (quadrant I and II), task consistency exists.

Paper [2] concludes that the relatively simple min–min
heuristic performs well in comparison to the other techniques.
However, this conclusion was drawn without considering the
factor of task consistency. The ETCs used in the experiments
of [2] are actually from quadrant III and IV in Fig. 1. In this

paper, we propose the fast greedy heuristic, which is expected
to perform better than min–min for ETCs from all quadrants.

2.2. Motivation for HC

For mapping a class of independent tasks onto heterogeneous
systems, it is clear that a solution is optimal if the completion
time is the same on each machine. This means that by trying
to obtain a solution that is very balanced, we end up with a
solution with a rather good makespan.

Only considering the factor of machine consistency, min–min
firstly maps the task with the minimal completion time from
among all unmapped tasks. Thus, it prefers to map the tasks
with a smaller task effort earlier than the tasks with a bigger
task effort. However, if the tasks with a bigger task effort are
mapped at the end of the scheduling process, it is more likely to
enlarge the imbalance of loads among hosts and deviate from
the load balance motivation, and thus to generate a worse solu-
tion. Therefore, the fast greedy mapping heuristic must consider
the factors of both machine consistency and task consistency.
For two tasks without a task consistency relationship, the one
with the earlier completion time should be mapped first. For
two tasks with a task consistency relationship, the one with
the bigger task effort must be mapped in advance. The combi-
nation of the above two mapping criteria forms the proposed
mapping heuristic, which outperforms min–min.

2.3. The other basic definitions

The following definitions will also be used in this paper.

Definition 2.3 (Cover relation). Let x and y be two different
elements of a partial order 〈P, �〉. Then x covers y, or y is
covered by x, provided that x�y and for any z�y, x�z. In
this situation x is called an upper cover of y while y is called a
lower cover of x.

Definition 2.4 (Hasse diagram). If 〈P, �〉 is a finite partial or-
der, then it can be represented by a Hasse diagram, which is a
DAG whose vertices are elements of P and whose edges cor-
respond to the corresponding cover relation.

Definition 2.5 (Minimal/maximal element). Let 〈P, �〉 be a
partial order, then an element b ∈ P is a minimal element of
P if there is no element a ∈ P that satisfies a�b. Similarly,
an element b ∈ P is a maximal element of P if there is no
element a ∈ P that satisfies b�a.

Definition 2.6 (Degree of task consistency). Let the indepen-
dent tasks vector be T = (t1, . . . , tp), the heterogeneous ma-
chines vector be M = (m1, . . . , mq), the ETC matrix be E =
[eij ]p×q . 〈T , �〉 is the partial order of task consistency in E.
The degree of task consistency in E is defined as

dtask(E) = |{(ti , tj )|ti�tj or tj�ti , ti ∈ T , tj ∈ T }|
|T |(|T | − 1)

.
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Table 1
ETC for the running example

Task no. m0 m1 m2 m3

t0 2000.0 2200.0 2400.0 2600.0
t1 900.0 1100.0 1300.0 1500.0
t2 950.0 1050.0 1350.0 1550.0
t3 980.0 1080.0 1330.0 1480.0
t4 600.0 700.0 800.0 1490.0
t5 550.0 1070.0 750.0 1000.0
t6 920.0 600.0 600.0 1000.0
t7 100.0 200.0 300.0 400.0

t0

t1 t2 t3

t4 t5 t6

t7

Fig. 2. Task priority diagram for the ETC in Table 1.

If dtask(E) = 1, 〈T , �〉 is a linear order. If dtask(E) = 0, the
Hasse diagram of 〈T , �〉 is |T | unconnected vertexes.

Definition 2.7 (Degree of machine consistency). Let the inde-
pendent tasks vector be T = (t1, . . . , tp), the heterogeneous
machines vector be M = (m1, . . . , mq), the ETC matrix be
E = [eij ]p×q . 〈M, �′〉 is the partial order of machine consis-
tency in E. The degree of machine consistency in E is defined
as

dmachine(E)

= |{(mi, mj )|mi�′mj or mj�′mi, mi ∈ M, mj ∈ M}|
|M|(|M| − 1)

.

The ETC shown in Table 1 is used as a running example
in this paper. In this example, the independent tasks vector
is T = {t0, . . . , t7}, the heterogeneous machines vector is
M = (m0, . . . , m3), and the ETC matrix is E = [eij ]8×4.
Based on the definition of task consistency in Section 2.1, it
is straightforward to construct the Hasse diagram of 〈T , �〉
as depicted in Fig. 2. This graph, in fact, is a TPD, which
contains the information about the mapping sequence of tasks.
For the min–min heuristic, the element in the lower level of
the diagram always has higher priority for mapping, and an
element cannot be mapped until all its predecessors have been
mapped.

3. Mapping a class of independent tasks with and without
TPD

In this section, we present all 20 greedy heuristics with and
without TPD for mapping a class of independent tasks and
identify the relationship amongst them.

3.1. Comparing optional mapping steps

Let the unmapped tasks set be T ′ = (t1, . . . , tl), the current
machine free-time vector be F = (f1, . . . , fq), which means
that host i is free after fi time-units for 1� i�q. The stan-

dard deviation of F is sd(F ) =
√∑q

i=1(A−fi)
2

q−1 , where A =∑q
i=1 fi

q
. The machine free-time vector after update is Fij =

(f1, . . . , fj + eij , . . . , fq), representing a mapping step where
task i is mapped to host j. Given Fi1j1 and Fi2j2 , the problem is
to specify which mapping step will be mapped first. Different
algorithms give different answers as shown in Sub-algorithms
3.1–3.3.

minCT in Sub-algorithm 3.1 prefers the mapping step with
the minimal completion time for the task, while minSD in Sub-
algorithm 3.3 prefers the mapping step which minimizes the
standard deviation of the system loads after update. maxCT
in Sub-algorithm 3.2 is opposite to minCT. All these sub-
algorithms are easily extended to the functions of a set of op-
tional mapping steps, each of which outputs the mapping step
with the best corresponding heuristic measure. They are de-
scribed as functions of two mapping steps only for conciseness
in writing.

Sub-algorithm 3.1 minCT(Fi1j1 , Fi2j2 )

Input: T ′ = (t1, . . . , tl), F = (f1, . . . , fq), Fi1j1 =
(f1, . . . , fj1 + ei1j1 , . . . , fq), Fi2j2 = (f1, . . . , fj2 +
ei2j2 , . . . , fq)

1: ct1 = fj1 + ei1j1

2: ct2 = fj2 + ei2j2

3: if ct1 > ct2 then
4: return Fi2j2

5: else
6: return Fi1j1

7: end if

Sub-algorithm 3.2 maxCT(Fi1j1 , Fi2j2 )

Input: T ′ = (t1, . . . , tl), F = (f1, . . . , fq), Fi1j1 =
(f1, . . . , fj1 + ei1j1 , . . . , fq), Fi2j2 = (f1, . . . , fj2 +
ei2j2 , . . . , fq)

1: ct1 = fj1 + ei1j1

2: ct2 = fj2 + ei2j2

3: if ct1 < ct2 then
4: return Fi2j2

5: else
6: return Fi1j1

7: end if
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Sub-algorithm 3.3 minSD(Fi1j1 , Fi2j2 )

Input: T ′ = (t1, . . . , tl), F = (f1, . . . , fq), Fi1j1 =
(f1, . . . , fj1 + ei1j1 , . . . , fq), Fi2j2 = (f1, . . . , fj2 +
ei2j2 , . . . , fq)

1: if sd(Fi1j1) > sd(Fi2j2) then
2: return Fi2j2

3: else
4: return Fi1j1

5: end if

The proposed Sub-algorithm minSD in 3.3 only considers the
relative values between sd1 and sd2, where sd1=sd(Fi1j1) and
sd2=sd(Fi2j2). Thus, many of the calculations in Sub-algorithm
3.3 can be erased by the following analytical analysis.

When j1 �= j2, let A = ∑q

i=1 fi

(q − 1)sd2
1 =

⎡
⎣ ∑

i �=j1,j2

(
fi − A + ei1j1

q

)2
⎤
⎦

+
(

fj1 + ei1j1 − A + ei1j1

q

)2

+
(

fj2 − A + ei1j1

q

)2

,

(q − 1)sd2
2 =

⎡
⎣ ∑

i �=j1,j2

(
fi − A + ei2j2

q

)2
⎤
⎦

+
(

fj1 − A + ei2j2

q

)2

+
(

fj2 + ei2j2 − A + ei2j2

q

)2

,

(q − 1)sd2
1 − (q − 1)sd2

2

= 2q2ei1j1fj1 − 2q2ei2j2fj2 + 2qei2j2A

−2qei1j1A + q(q − 1)e2
i1j1

− q(q − 1)e2
i2j2

.

Then,

sd1 − sd2 =

⎧⎪⎨
⎪⎩

> 0 if 2qei1j1fj1 + 2ei2j2A + (q − 1)e2
i1j1

> 2qei2j2fj2 + 2ei1j1A + (q − 1)e2
i2j2

,

�0 otherwise.

When j1 = j2 = j , let A = ∑q

i=1 fi

(q − 1)sd2
1 =

∑
i �=j

(
fi − A + ei1j

q

)2

+
(

fj + ei1j − A + ei1j

q

)2

= (q − 1)

q
e2
i1j

+ 2(qfj − A)

q
ei1j

+
(

q∑
i=1

f 2
i − A2

q

)
.

It is clear that at this time (q − 1)sd2
1 is a quadratic function

of ei1j with the axis of symmetry ei1j = A−qfj

q−1 , where this
function reaches its minimum. Thus, given sd1 and sd2,

if A − qfj �0

sd1 − sd2 =
{

> 0 if ei1j > ei2j ,

�0 otherwise.

if A − qfj > 0

sd1−sd2 =
⎧⎨
⎩> 0 if

∣∣∣∣A − qfj

q − 1
−ei1j

∣∣∣∣>
∣∣∣∣A − qfj

q − 1
−ei2j

∣∣∣∣ ,
�0 otherwise.

3.2. Mapping algorithms without TPD

Given the independent tasks vector T = (t1, . . . , tp), the
heterogeneous machines vector M = (m1, . . . , mq), and the
ETC matrix E = [eij ]p×q , the general form of the greedy
scheduling algorithm without TPD is described in Algorithm
3.12. In Algorithm 3.12 the mapping iteration repeats until
all the tasks have been mapped. In each round of this itera-
tion only one task is selected to be mapped onto a suitable
machine.

The difference among the various mapping algorithms is the
different sub-algorithm First-Mapping-Step (in Sub-algorithms
3.4–3.9) used. In First-Mapping-Step two metrics are used. For
each task the first metric is to select the best machine onto
which the task can be mapped. (Thus, maxCT cannot be used as
the first metric.) Based on this result, the second metric is used
to select the best task with its corresponding destination ma-
chine. Hence, new heuristics are in fact designed by combining
the metrics, i.e. minCT, minSD and maxCT, in the two steps
of the First-Mapping-Step algorithm. The possible combina-
tions include minCT–minCT, minCT–minSD, minCT–maxCT,
minSD–minCT, minSD–minSD and minSD–maxCT, described
in Sub-algorithms 3.4 through 3.9.

Algorithms 3.10 and 3.11 are two other more simple mapping
algorithms without TPD, in which each task is assigned in
arbitrary order to the machine according to minCT and minSD,
respectively.

Sub-algorithm 3.4 First-Mapping-Step({Fij |ti ∈ T , 1�j �q},
minCT–minCT)

1: 	F = {Fij ′ |Fij ′ =minCT({Fij |1�j �q}), ti ∈ T }
2: Fij =minCT( 	F)

3: return Fij

Sub-algorithm 3.5 First-Mapping-Step({Fij |ti ∈ T , 1�j �q},
minCT–minSD)

1: 	F = {Fij ′ |Fij ′ =minCT({Fij |1�j �q}), ti ∈ T }
2: Fij =minSD( 	F)

3: return Fij
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Sub-algorithm 3.6 First-Mapping-Step({Fij |ti ∈ T , 1�j �q},
minCT–maxCT)

1: 	F = {Fij ′ |Fij ′ =minCT({Fij |1�j �q}), ti ∈ T }
2: Fij =maxCT( 	F)

3: return Fij

Sub-algorithm 3.7 First-Mapping-Step({Fij |ti ∈ T , 1�j �q},
minSD–minCT)

1: 	F = {Fij ′ |Fij ′ =minSD({Fij |1�j �q}), ti ∈ T }
2: Fij =minCT( 	F)

3: return Fij

Sub-algorithm 3.8 First-Mapping-Step({Fij |ti ∈ T , 1�j �q},
minSD–minSD)

1: 	F = {Fij ′ |Fij ′ =minSD({Fij |1�j �q}), ti ∈ T }
2: Fij =minSD( 	F)

3: return Fij

Sub-algorithm 3.9 First-Mapping-Step({Fij |ti ∈ T , 1�j �q},
minSD–maxCT)

1: 	F = {Fij ′ |Fij ′ =minSD({Fij |1�j �q}), ti ∈ T }
2: Fij =maxCT( 	F)

3: return Fij

Algorithm 3.10 simple-minCT: Mapping Algorithm without
TPD

1: while T �= � do
2: ti is any task in T
3: Fij ′ =minCT({Fij |1�j �q})
4: map task ti to machine mj ′ and update the load on mj ′
5: T = T − {ti}
6: end while

Algorithm 3.11 simple-minSD: Mapping Algorithm without
TPD

1: while T �= � do
2: ti is any task in T
3: Fij ′ =minSD({Fij |1�j �q})
4: map task ti to machine mj ′ and update the load on mj ′
5: T = T − {ti}
6: end while

Algorithm 3.12 NTPD-heuristic: Mapping Algorithm without
TPD

1: while T �= � do
2: Fi′j ′ =First-Mapping-Step({Fij |ti ∈ T , 1�j �q},

heuristic) {output the first mapping step according to the
selected heuristic}

3: map task ti′ to machine mj ′ and update the load on mj ′
4: T = T − {ti′ }
5: end while

3.3. Mapping algorithms with TPD

Algorithm 3.13 is the generic form of the mapping algorithm
with TPD in the decreasing order of task effort. In this algorithm
the cycle repeats until all the tasks have been mapped. In each
round of the iteration, T is the set of all the maximal elements
of the unmapped tasks in the current TPD. The First-Mapping-
Step algorithm can then be used to select a task ti′ from T and
map it onto mj ′ . After ti′ is mapped, vertex ti′ and its edges
are removed from the TPD G, and the set T, containing the
maximal elements of the new G, is also updated.

Algorithm 3.13 TPD↓-heuristic: Mapping Algorithm with
TPD

1: G =Hasse-Diagram-Generator(Ep×q ) {E is the input ETC
matrix}

2: T = {t |t is a maximal element of G}
3: while T �= ∅ do
4: Fi′j ′ =First-Mapping-Step({Fij |ti ∈ T , 1�j �q},

heuristic)
5: map ti′ to mj ′ and update the load on mj ′
6: delete ti′ and the edges of ti′ from G
7: T = {t |t is a maximal element of the new G′}
8: end while

Algorithm 3.14 TPD↑-heuristic: Mapping Algorithm with
TPD

1: G =Hasse-Diagram-Generator(Ep×q ) {E is the input ETC
matrix}

2: T = {t |t is a minimal element of G}
3: while T �= ∅ do
4: Fi′j ′ =First-Mapping-Step({Fij |ti ∈ T , 1�j �q},

heuristic)
5: map ti′ to mj ′ and update the load on mj ′
6: delete ti′ and the edges of ti′ from G
7: T = {t |t is a minimal element of the new G}
8: end while

Property 3.1. The operation in line 7 of algorithm 3.13 is
equivalent to (3)

T = (T − {ti′ }) ∪ {t |t is covered only by ti′ in G}. (3)

Proof. Let t be an element, which is only covered by ti′ in G
and there is not any other element covering t in G. It is clear
that t turns into the new maximal element in the new G. The
maximal elements, except ti′ in G, remain maximal in the new
G. It follows the conclusion. �

This property simplifies the process of finding all the maximal
elements in the new G.

Fig. 3 depicts the execution procedure of TPD↓–minCT–
minCT (Algorithm 3.13 with minCT–minCT) for the running
example in Section 2.3. Each round of the iteration in this al-
gorithm is described by a sub-figure, where the current TPD,
the set T and the mapping step generated by minCT–minCT for
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t0

t1 t2 t3

t4 t5 t6

t7
T={t0}

map t0 to m0

t1 t2 t3

t4 t5 t6

t7

T={t1 t2 t3}

map t2 to m1

t1 t3

t4
t5 t6

t7

T={t1 t3}

map t1 to m2

t3

t4 t5 t6

t7
T={t3 t4}

map t3 to m3

t4 t5 t6

t7
T={t4 t5 t6}

map t6 to m1

t4 t5

t7
T={t4 t5}

map t5 to m2

t4

t7
T={t4}

map t4 to m1

t7
T={t7}

map t7 to m0

Fig. 3. Execution process of Algorithm 3.13 for the running example. (a) The first iteration, (b) the second iteration, (c) the third iteration, (d) the fourth
iteration, (e) the fifth iteration, (f) the sixth iteration, (g) the seventh iteration, (h) the eighth iteration.

this round are listed. The two mapping schemes generated by
NTPD–minCT–minCT (Algorithm 3.12 with minCT–minCT)
and TPD↓–minCT–minCT are listed in Fig. 4. The makespans
of these two mapping schemes generated by NTPD–minCT–
minCT and TPD↓–minCT–minCT are 3200 and 2350, respec-
tively. This gives a typical example to show that TPD↓–minCT–
minCT performs better than NTPD–minCT–minCT when task
consistency exists in the input ETC.

Algorithm 3.14 is the mapping algorithm with TPD in the
increasing order of task effort, which is different from Algo-
rithm 3.13 in that the mapping set T contains all the minimal
elements of the diagram in each cycle.

3.4. Summary of greedy heuristics

Table 2 gives a summary of 20 greedy mapping algorithms
with and without the support of TPD. Different heuristics used

in Algorithms 3.12–3.14 form different mapping algorithms.
H1, H3 and H5 are actually the algorithms of mct, min–min
and max–min in [2], respectively. All the other algorithms are
newly proposed in this paper.

The following properties identify the relationships amongst
these greedy algorithms. Any two algorithms are referred to as
equivalent to each other if they output the same result for any
given input.

Property 3.2. NTPD-heuristic, TPD↓-heuristic, TPD↑-
heuristic are equivalent to each other for any ETC E, such
that dtask(E) = 0.

Proof. dtask(E) = 0 means that there does not exist task con-
sistency relationship between any two tasks in E. Thus, each
task is either a maximal or a minimal element in the TPD. The
set T in Algorithms 3.13 and 3.14 always contains all unmapped
tasks. It follows the conclusion. �
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Fig. 4. The mapping schemes for the running example. (a) The mapping scheme generated from NTPD–minCT–minCT. (b) The mapping scheme generated
from TPD↓–minCT–minCT.

Table 2
Summary of greedy heuristics for mapping a class of independent tasks

No. Name Components Reference

H1 simple-minCT Algorithm 3.10 mct in [2]
H2 simple-minSD Algorithm 3.11 New

H3 NTPD–minCT–minCT Algorithm 3.12, Sub-algorithm 3.4 min–min in [2]
H4 NTPD–minCT–minSD Algorithm 3.12, Sub-algorithm 3.5 New
H5 NTPD–minCT–maxCT Algorithm 3.12, Sub-algorithm 3.6 max–min in [2]
H6 NTPD–minSD–minCT Algorithm 3.12, Sub-algorithm 3.7 New
H7 NTPD–minSD–minSD Algorithm 3.12, Sub-algorithm 3.8 New
H8 NTPD–minSD–maxCT Algorithm 3.12, Sub-algorithm 3.9 New

H9 TPD↑–minCT–minCT Algorithm 3.14, Sub-algorithm 3.4 New
H10 TPD↑–minCT–minSD Algorithm 3.14, Sub-algorithm 3.5 New
H11 TPD↑–minCT–maxCT Algorithm 3.14, Sub-algorithm 3.6 New
H12 TPD↑–minSD–minCT Algorithm 3.14, Sub-algorithm 3.7 New
H13 TPD↑–minSD–minSD Algorithm 3.14, Sub-algorithm 3.8 New
H14 TPD↑–minSD–maxCT Algorithm 3.14, Sub-algorithm 3.9 New

H15 TPD↓–minCT–minCT Algorithm 3.13, Sub-algorithm 3.4 New
H16 TPD↓–minCT–minSD Algorithm 3.13, Sub-algorithm 3.5 New
H17 TPD↓–minCT–maxCT Algorithm 3.13, Sub-algorithm 3.6 New
H18 TPD↓–minSD–minCT Algorithm 3.13, Sub-algorithm 3.7 New
H19 TPD↓–minSD–minSD Algorithm 3.13, Sub-algorithm 3.8 New
H20 TPD↓–minSD–maxCT Algorithm 3.13, Sub-algorithm 3.9 New

Property 3.2 shows that TPD↓-heuristic and TPD↑-heuristic
have the same performance as NTPD-heuristic when no task
consistency exists between any two of the given tasks.

Property 3.3. H5 and H17 are equivalent to each other.

Proof. Let T be the set of all maximal elements in a TPD, and
T ′ be the set of all unmapped tasks. It is clear that T ⊆ T ′.
Suppose any task t ′ ∈ T ′ and t ′ /∈ T , there must exist a task
t ∈ T such that t ′�t . This shows that the completion time of t ′
on any machine is earlier than that of t. It is impossible that t ′

is picked out by line 2 in Algorithm 3.12 when the heuristic is
minCT–maxCT. Thus, if task t ′′ is selected by line 2 Algorithm
3.12, t ′′ ∈ T . It follows the conclusion. �

Property 3.3 shows that H5 is only equivalent to H17. It is not
generically equivalent to the other TPD↓-heuristic algorithms.
However, under certain conditions H5 can be equivalent to H15,
as shown in Property 3.4.

Property 3.4. H5 and H15 are equivalent to each other for any
ETC E, such that dtask(E) = 1.
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Table 3
Computational complexity of greedy mapping heuristics

Algorithm name Computational complexity

simple-minCT O(pq)

simple-minSD O(pq)

NTPD-heuristic O(p2q)

TPD↓-heuristic O(p2q)

TPD↑-heuristic O(p2q)

Proof. Trivial. �

Properties 3.2 and 3.4 show that with task full-consistency
(dtask(E) = 1) H15 is equivalent to H5, while with task non-
consistency (dtask(E) = 0) H15 is equivalent to H3. These for-
mal properties coincide with the intuitive view that H15 is a
tradeoff between H5 and H3.

Property 3.5. H3 and H9 are equivalent.

Proof. The proof of this property is similar to the proof of
Property 3.3, and thus it is omitted due to space limitations. �

Given an ETC matrix E = [eij ]p×q , the computational com-
plexities for all types of greedy heuristics are listed in Table
3. NTPD-heuristic, TPD↓-heuristic and TPD↑-heuristic have
the same computational complexity because the complexity of
constructing a TPD is also O(p2q).

4. Task execution time modelling for HC systems

In order to allow the study of the relative performance of
different mapping heuristics under different circumstances, the
ETC model is needed to simulate different HC environments
by changing the parameters of this model. The ETC model
used in this study has four parameters: machine heterogeneity,
task heterogeneity, machine consistency and task consistency.
The variation along a row is referred to as the machine het-
erogeneity; this is the degree to which the machine execution
times vary for a given task. A system’s machine heterogeneity
is based on a combination of the machine heterogeneities for
all tasks (rows). Similarly, the variation along a column of an
ETC matrix is referred to as the task heterogeneity; this is the
degree to which the task execution times vary for a given ma-
chine. A system’s task heterogeneity is based on a combination
of the task heterogeneities for all machines (columns). Task
consistency and machine consistency are measured by dtask and
dmachine defined in Section 2.3, respectively.

The COV-based ETC generation method [1] is adopted in our
experiments. This method provides greater control over spread
of the execution time values than the range-based method used
widely previously [2,14,15,17]. Let � and � be the standard
deviation and mean, respectively, of a set of execution times.
V = �

� , the COV, is adopted to measure the degree of hetero-
geneity.

In this method, �task, Vtask, Vmachine, representing the mean
of task execution time, the COV of tasks, and the COV of ma-

V
ta

s
k

Vmachine

Vtask =  Vmachine

Vtask >> Vmachine

Vmachine  >> Vtask

high dmachine

high dtask

Fig. 5. Heterogeneity and consistency.

chines, respectively, are used to generate an initial ETC, which
satisfies the requirements of heterogeneity. In this process the
gamma distribution is used to closely represent the distribution
of task execution times. (In our experiments the algorithm in
[3], implemented by Java package [18], is adopted to sample
values from a given gamma distribution.) Secondly, by sorting
the values of selected entries in each row and each column, the
ETC will then satisfy the requirements of machine consistency
and task consistency, respectively. If the sorting is performed
on all values in each row or column, full-consistency will be
achieved. If the sorting is performed on half of the values in
each row or column, partial-consistency will be obtained. An
ETC without sorting is referred to as original-consistency.

It should be noted that heterogeneity and consistency are two
concepts closely related to each other. If Vmachine � Vtask, rep-
resenting the machine heterogeneity is much bigger than the
task heterogeneity, the machines may be much different from
each other in terms of their computing speeds so that the differ-
ences in the computational requirements of the tasks would not
affect the relative order of execution times for a given task on
those machines. Thus, in this situation the generated ETC with-
out sorting must have a high degree of machine consistency.
Similarly, if Vtask � Vmachine the generated ETC without sort-
ing must have a high degree of task consistency. Additionally,
given a fixed value of Vmachine, dtask increases with the increase
of Vtask. Given a fixed value of Vtask, dmachine increases with
the increase of Vmachine. This relationship is depicted in Fig. 5.

The ETCs generated from the COV-based method hold the
aforementioned properties, however, the ETCs resulting from
the range-based method do not hold them. This is the other
reason why we use the COV-based generating method for ETCs
in our experiments.
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5. Experimental results

A purpose-built simulation software tool has been developed
in this study to demonstrate and evaluate the greedy heuristics
summarized in Table 2. These heuristics are applied to the
ETCs described in Section 4 for performance assessment. The
software allows users to specify the size and type of an ETC,
and to choose which heuristics to execute. It then generates the
specified ETCs, executes the desired heuristics, and displays the
results. All the results discussed in this section were generated
using this software.

The most important issue in performance measurement for
comparing these mapping heuristics is makespan. Thus, the
performance of different heuristics is measured by the average
makespan of the ETCs with the specified type. For each heuris-
tic and each type of ETC, the results are averaged over 1000
different ETCs of the same type. In all the experiments, the
size of all ETCs is 512 × 16, the mean of task execution time
�task is 1000, and the task COV Vtask is in [0.1, 1.1] while the

Table 4
NB and NEB table for machine original-consistent ETCs with fixed machine
COV 0.1

COV of tasks simple-heuristic NTPD-heuristic TPD↑-heuristic TPD↓-heuristic

H1 H2 H3 H4 H5 H6 H7 H8 H10 H11 H12 H13 H14 H15 H16 H18 H19 H20

0.1 NB 0 0 26 0 0 0 0 0 1 0 0 0 0 35 33 9 5 0
NEB 0 0 563 616 0 517 515 0 615 0 517 515 0 0 0 0 0 0

0.2 NB 0 0 30 2 0 0 0 0 2 0 0 0 0 190 187 35 32 0
NEB 0 0 265 304 0 242 215 0 304 0 242 215 0 0 0 0 0 0

0.3 NB 0 0 8 0 0 0 0 0 1 0 0 0 0 451 352 64 38 0
NEB 0 0 34 46 0 36 35 0 43 0 36 35 0 0 0 0 0 0

0.4 NB 0 0 0 0 0 0 0 0 0 0 0 0 0 556 348 51 43 0
NEB 0 0 1 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0

0.5 NB 0 0 0 0 0 0 0 0 0 0 0 0 0 569 351 57 23 0
NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.6 NB 0 0 0 0 0 0 0 0 0 0 0 0 0 563 370 41 26 0
NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 5
NB and NEB table for machine partial-consistent ETCs with fixed machine
COV 0.1

COV of tasks simple-heuristic NTPD-heuristic TPD↑-heuristic TPD↓-heuristic

H1 H2 H3 H4 H5 H6 H7 H8 H10 H11 H12 H13 H14 H15 H16 H18 H19 H20

0.1 NB 0 0 165 25 0 105 0 0 25 0 99 0 0 1 1 0 0 0
NEB 0 0 45 277 0 131 181 0 276 0 129 181 0 0 0 0 0 0

0.2 NB 0 0 176 43 0 86 0 0 39 0 105 0 0 74 88 14 17 0
NEB 0 0 10 146 0 91 124 0 146 0 90 124 0 0 0 0 0 0

0.3 NB 0 0 29 10 0 33 0 0 4 0 22 0 0 388 335 65 55 0
NEB 0 0 1 21 0 17 21 0 21 0 17 21 0 0 0 0 0 0

0.4 NB 0 0 0 0 0 3 0 0 0 0 0 0 0 476 412 51 57 0
NEB 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

0.5 NB 0 0 0 0 0 0 0 0 0 0 0 0 0 517 396 41 46 0
NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.6 NB 0 0 0 0 0 0 0 0 0 0 0 0 0 526 377 54 43 0
NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

machine COV Vmachine is in [0.1, 0.6]. The heterogeneous
ranges were chosen to reflect the fact that in real situations
there is more variability across execution times for different
tasks on a given machine than the execution time for a single
task across different machines.

The range bar for the average makespan of each heuristic
shows a 95% confidence interval for the corresponding av-
erage makespan. This interval represents the likelihood that
makespans of mappings for that type of heuristic fall within
the specified range. That is, if another ETC matrix (of the same
type) is generated, and the specified heuristic generates a map-
ping, then the makespan of the mapping would be within the
given interval with 95% certainty.

The following two metrics are also recorded in the compar-
ison of the heuristics.

• The number of best solutions (denoted by NB) is the number
of times a particular method was the only one that produced
the shortest makespan.
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Table 6
NB and NEB table for machine full-consistent ETCs with fixed machine COV 0.1

COV of tasks simple-heuristic NTPD-heuristic TPD↑-heuristic TPD↓-heuristic

H1 H2 H3 H4 H5 H6 H7 H8 H10 H11 H12 H13 H14 H15 H16 H18 H19 H20

0.1 NB 0 0 55 255 0 83 0 0 128 0 117 0 0 72 127 25 48 0
NEB 0 0 2 1 0 0 88 0 1 0 2 88 0 0 0 0 0 0

0.2 NB 0 0 0 4 0 0 0 0 2 0 0 0 0 300 420 120 153 0
NEB 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

0.3 NB 0 0 0 0 0 0 0 0 0 0 0 0 0 341 428 119 112 0
NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.4 NB 0 0 0 0 0 0 0 0 0 0 0 0 0 338 477 93 92 0
NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.5 NB 0 0 0 0 0 0 0 0 0 0 0 0 0 359 473 80 88 0
NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.6 NB 0 0 0 0 0 0 0 0 0 0 0 0 0 423 429 77 71 0
NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Fig. 6. Average makespan of the greedy heuristics when Vmachine = 0.1 and ETCs are machine original-consistent. (a) Vtask = 0.1, (b) Vtask = 0.2, (c)
Vtask = 0.3, (d) Vtask = 0.4, (e) Vtask = 0.5, (f) Vtask = 0.6.

• The number of best solutions equal with another method (de-
noted by NEB), which counts those cases where a particu-
lar method produced the shortest makespan but at least one
other method also achieved the same makespan. NEB is the
complement to NB.

All of the experiments are performed in two parts.

• In the first part, Vtask increases with a step pace 0.1 while
Vmachine is fixed at a value smaller than Vtask. In this process,
the value of Vtask minus Vmachine becomes bigger and bigger,
and thus the task consistency degree dtask of the generated
ETCs increases gradually.

• In the second part, Vmachine increases with a step pace
0.1 while the task COV vtask is fixed at a value bigger
than Vmachine. In this process, the value of Vtask minus
Vmachine becomes smaller and smaller, and thus the task
consistency degree dtask of the generated ETCs decreases
gradually.

In each situation the values in every row of an ETC may or may
not be sorted to form ETCs with different types of machine
consistency: original-consistency, partial-consistency and full-
consistency.
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Fig. 7. Average makespan of the greedy heuristics when Vmachine = 0.1 and ETCs are machine partial-consistent. (a) Vtask = 0.1, (b) Vtask = 0.2, (c)
Vtask = 0.3, (d) Vtask = 0.4, (e) Vtask = 0.5, (f) Vtask = 0.6.
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Fig. 8. Average makespan of the greedy heuristics when Vmachine = 0.1 and ETCs are machine full-consistent. (a) Vtask = 0.1, (b) Vtask = 0.2, (c) Vtask = 0.3,
(d) Vtask = 0.4, (e) Vtask = 0.5, (f) Vtask = 0.6.
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Table 7
NB and NEB table for machine original-consistent ETCs with fixed machine COV 0.6

COV of tasks simple-heuristic NTPD-heuristic TPD↑-heuristic TPD↓-heuristic

H1 H2 H3 H4 H5 H6 H7 H8 H10 H11 H12 H13 H14 H15 H16 H18 H19 H20

0.1 NB 0 0 12 0 0 1 0 0 1 0 0 0 0 846 24 9 0 0
NEB 0 0 44 60 0 35 36 0 63 0 35 36 0 0 0 0 0 0

0.2 NB 0 0 7 0 0 2 0 0 0 0 0 0 0 917 11 8 0 0
NEB 0 0 18 28 0 15 20 0 28 0 16 20 0 0 0 0 0 0

0.3 NB 0 0 5 1 0 0 0 0 0 0 0 0 0 953 14 6 0 0
NEB 0 0 4 8 0 8 6 0 8 0 8 6 0 0 0 0 0 0

0.4 NB 0 0 2 1 0 1 0 0 0 0 0 0 0 977 6 2 0 0
NEB 0 0 5 7 0 3 3 0 7 0 3 3 0 0 0 0 0 0

0.5 NB 0 0 0 0 0 0 0 0 0 0 0 0 0 991 1 2 0 0
NEB 0 0 2 3 0 1 2 0 3 0 1 2 0 0 0 0 0 0

0.6 NB 0 0 0 0 0 0 0 0 0 0 0 0 0 993 1 3 0 0
NEB 0 0 2 2 0 1 1 0 2 0 1 1 0 0 0 0 0 0

Table 8
NB and NEB table for machine partial-consistent ETCs with fixed machine COV 0.6

COV of tasks simple-heuristic NTPD-heuristic TPD↑-heuristic TPD↓-heuristic

H1 H2 H3 H4 H5 H6 H7 H8 H10 H11 H12 H13 H14 H15 H16 H18 H19 H20

0.1 NB 0 0 100 84 0 79 1 0 65 0 66 6 0 287 130 1 0 0
NEB 0 0 3 55 0 29 98 0 54 0 28 99 0 0 0 0 0 0

0.2 NB 0 0 66 52 0 44 1 0 58 0 56 9 0 446 155 4 0 0
NEB 0 0 1 33 0 16 60 0 33 0 16 60 0 0 0 0 0 0

0.3 NB 0 0 44 21 0 28 4 0 25 0 34 0 0 556 200 5 0 0
NEB 0 0 2 34 0 5 43 0 35 0 5 43 0 0 0 0 0 0

0.4 NB 0 0 31 24 0 20 2 0 17 0 20 3 0 685 149 6 0 0
NEB 0 0 0 14 0 1 28 0 14 0 1 28 0 0 0 0 0 0

0.5 NB 0 0 19 11 0 13 0 0 8 0 14 3 0 731 181 5 0 0
NEB 0 0 0 5 0 0 10 0 5 0 0 10 0 0 0 0 0 0

0.6 NB 0 0 7 6 0 3 1 0 8 0 3 1 0 804 144 13 0 0
NEB 0 0 0 4 0 0 6 0 4 0 0 6 0 0 0 0 0 0

Table 9
NB and NEB table for machine full-consistent ETCs with fixed machine COV 0.6

COV of tasks simple-heuristic NTPD-heuristic TPD↑-heuristic TPD↓-heuristic

H1 H2 H3 H4 H5 H6 H7 H8 H10 H11 H12 H13 H14 H15 H16 H18 H19 H20

0.1 NB 0 0 84 123 0 87 73 0 82 0 56 81 0 85 324 0 2 0
NEB 0 0 0 0 0 0 3 0 0 0 0 3 0 0 0 0 0 0

0.2 NB 0 0 54 75 0 61 66 0 43 0 41 52 0 123 477 0 6 0
NEB 0 0 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0

0.3 NB 0 0 26 38 0 22 31 0 39 0 26 34 0 200 571 5 8 0
NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.4 NB 0 0 13 14 0 21 20 0 16 0 12 12 0 235 643 6 8 0
NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.5 NB 0 0 10 6 0 8 7 0 9 0 10 5 0 246 688 3 8 0
NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.6 NB 0 0 3 3 0 0 6 0 5 0 1 5 0 292 654 14 16 0
NEB 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
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Fig. 9. Average makespan of the greedy heuristics when Vmachine = 0.6 and ETCs are machine original-consistent. (a) Vtask = 0.6, (b) Vtask = 0.7, (c)
Vtask = 0.8, (d) Vtask = 0.9, (e) Vtask = 1.0, (f) Vtask = 1.1.

5.1. Increasing Vtask , fixing Vmachine

In this part two experimental situations are considered while
increasing Vtask and fixing Vmachine. Firstly, Vmachine is fixed at
0.1 while Vtask increases from 0.1 to 0.6. Secondly, Vmachine is
fixed at 0.6 while Vtask increases from 0.6 to 1.1.

Tables 4 through 6 record the NB and NEB of the heuris-
tics used for the ETCs in the first situation, with machine
original-consistency, machine partial-consistency and machine
full-consistency, respectively. Figs. 6 through 8 show the aver-
age makespan of the heuristics applied to the ETCs in the first
situation, with machine original-consistency, machine partial-
consistency and machine full-consistency, respectively. Tables
7 through 9 and Figs. 9 through 11 record the corresponding
experimental results for ETCs in the second situation.

For the first situation Tables 4 through 6 and Figs. 6 through
8 show that H15 is the best among all the heuristics with the
following two exceptions:

• H3 outperforms H15 if dtask of an ETC is small when Vtask
is relatively small at the range of [0.1, 0.2] and Vmachine is
fixed at 0.1.

• H16 always outperforms H15 when ETCs are machine full-
consistent.

By calculating the average makespan of H3 minus that of H15
along the increase of Vtask for three types of machine consis-
tency, Fig. 12(a) shows that the superiority of H15 over H3 is
more and more clear along the increase of dtask (dtask increases
with the increase of Vtask when Vmachine is fixed), because the

average makespan of H3 minus that of H15 increases monoton-
ically in this situation. Additionally, this result occurs regard-
less of the types of machine consistency. By calculating the
average makespan of H15 minus that of H16 along the increase
of Vtask for three types of machine consistency, Fig. 13(a) re-
confirms that H16 is better than H15 when ETCs are machine
full-consistent, as the line for machine full-consistency in it is
always above y = 0.

For the second situation the results in Tables 7 through 9
and Figs. 9 through 11 coincide with the conclusion of the first
situation with the following extra findings:

• H15 outperforms H3 clearly even if dtask of an ETC is rela-
tively small when Vtask and Vmachine are both fixed at 0.6.

• The superiority of H15 over H3 in the second situation (Fig.
12(b)) is clearer than that in the first situation (Fig. 12(a)).

• The predominance of H16 over H15 in the second situation
(Table 9 and Fig. 13(b)) is clearer than that in the first situ-
ation (Table 6 and Fig. 13(a)).

Fig. 13 also shows that the line for machine partial-consistency
is in the middle of the other two lines. It indicates that the
superiority of H16 over H15 is related to the degree of machine
consistency dmachine.

5.2. Increasing Vmachine, fixing Vtask

In this subsection, the experiments are performed while in-
creasing Vtask and fixing Vmachine. Vtask is fixed at 0.6 while
Vmachine increases from 0.1 to 0.6.
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Fig. 10. Average makespan of the greedy heuristics when Vmachine = 0.6 and ETCs are machine partial-consistent. (a) Vtask = 0.6, (b) Vtask = 0.7, (c)
Vtask = 0.8, (d) Vtask = 0.9, (e) Vtask = 1.0, (f) Vtask = 1.1.

0

5000

10000

15000

20000

25000

30000

35000

40000

2019181615141312111087654321

a
v
e
ra

g
e
 m

a
k
e
s
p
a
n

greedy heuristics

0

5000

10000

15000

20000

25000

30000

35000

40000

2019181615141312111087654321

a
v
e
ra

g
e
 m

a
k
e
s
p
a
n

greedy heuristics

0

5000

10000

15000

20000

25000

30000

35000

40000

2019181615141312111087654321

a
v
e
ra

g
e
 m

a
k
e
s
p
a
n

greedy heuristics

0

5000

10000

15000

20000

25000

30000

35000

40000

2019181615141312111087654321

a
v
e
ra

g
e
 m

a
k
e
s
p
a
n

greedy heuristics

0

5000

10000

15000

20000

25000

30000

35000

40000

2019181615141312111087654321

a
v
e
ra

g
e
 m

a
k
e
s
p
a
n

greedy heuristics

0

5000

10000

15000

20000

25000

30000

35000

40000

19181615141312111087654321

a
v
e
ra

g
e
 m

a
k
e
s
p
a
n

greedy heuristics

20

Fig. 11. Average makespan of the greedy heuristics when Vmachine = 0.6 and ETCs are machine full-consistent. (a) Vtask = 0.6, (b) Vtask = 0.7, (c) Vtask = 0.8,
(d) Vtask = 0.9, (e) Vtask = 1.0, (f) Vtask = 1.1.
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Fig. 12. Comparison between H3 and H15 along the increase of Vtask. (a) Vmachine = 0.1, (b) Vmachine = 0.6.
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Fig. 13. Comparison between H15 and H16. (a) Vmachine = 0.1, (b) Vmachine = 0.6.

Table 10
NB and NEB table for machine original-consistent ETCs with fixed task COV 0.6

COV of machines simple-heuristic NTPD-heuristic TPD↑-heuristic TPD↓-heuristic

H1 H2 H3 H4 H5 H6 H7 H8 H10 H11 H12 H13 H14 H15 H16 H18 H19 H20

0.1 NB 0 0 0 0 0 0 0 0 0 0 0 0 0 563 370 41 26 0
NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.2 NB 0 0 2 0 0 0 0 0 0 0 0 0 0 673 300 12 6 0
NEB 0 0 2 4 0 3 0 0 4 0 3 0 0 0 0 0 0 0

0.3 NB 0 0 7 0 0 0 0 0 0 0 1 0 0 742 197 13 1 0
NEB 0 0 18 17 0 13 12 0 18 0 13 12 0 0 0 0 0 0

0.4 NB 0 0 10 0 0 0 0 0 0 0 1 0 0 815 95 14 0 0
NEB 0 0 19 33 0 17 26 0 34 0 17 26 0 0 0 0 0 0

0.5 NB 0 0 7 0 0 0 0 0 0 0 0 0 0 856 33 13 0 0
NEB 0 0 26 47 0 36 38 0 47 0 37 38 0 0 0 0 0 0

0.6 NB 0 0 12 0 0 1 0 0 1 0 0 0 0 846 24 9 0 0
NEB 0 0 44 60 0 35 36 0 63 0 35 36 0 0 0 0 0 0
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Table 11
NB and NEB table for machine partial-consistent ETCs with fixed task COV 0.6

COV of machines simple-heuristic NTPD-heuristic TPD↑-heuristic TPD↓-heuristic

H1 H2 H3 H4 H5 H6 H7 H8 H10 H11 H12 H13 H14 H15 H16 H18 H19 H20

0.1 NB 0 0 0 0 0 0 0 0 0 0 0 0 0 526 377 54 43 0
NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.2 NB 0 0 7 1 0 1 0 0 1 0 2 0 0 472 488 10 14 0
NEB 0 0 0 3 0 0 1 0 3 0 0 1 0 0 0 0 0 0

0.3 NB 0 0 27 29 0 23 0 0 20 0 24 0 0 460 360 3 1 0
NEB 0 0 0 10 0 3 40 0 10 0 3 40 0 0 0 0 0 0

0.4 NB 0 0 64 55 0 44 0 0 57 0 39 0 0 395 268 0 3 0
NEB 0 0 0 18 0 5 52 0 18 0 5 52 0 0 0 0 0 0

0.5 NB 0 0 93 73 0 66 0 0 57 0 68 0 0 317 210 0 0 0
NEB 0 0 0 23 0 19 75 0 23 0 19 75 0 0 0 0 0 0

0.6 NB 0 0 100 84 0 79 1 0 65 0 66 6 0 287 130 1 0 0
NEB 0 0 3 55 0 29 98 0 54 0 28 99 0 0 0 0 0 0

Table 12
NB and NEB table for machine full-consistent ETCs with fixed task COV 0.6

COV of machines simple-heuristic NTPD-heuristic TPD↑-heuristic TPD↓-heuristic

H1 H2 H3 H4 H5 H6 H7 H8 H10 H11 H12 H13 H14 H15 H16 H18 H19 H20

0.1 NB 0 0 0 0 0 0 0 0 0 0 0 0 0 423 429 77 71 0
NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.2 NB 0 0 0 0 0 0 0 0 0 0 0 0 0 284 685 6 25 0
NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.3 NB 0 0 0 0 0 0 0 0 0 0 0 0 0 187 809 0 4 0
NEB 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.4 NB 0 0 7 3 0 9 3 0 5 0 2 3 0 143 818 0 2 0
NEB 0 0 0 0 0 0 5 0 0 0 0 5 0 0 0 0 0 0

0.5 NB 0 0 48 47 0 35 40 0 23 0 25 40 0 98 631 1 2 0
NEB 0 0 0 0 0 0 10 0 0 0 0 10 0 0 0 0 0 0

0.6 NB 0 0 84 123 0 87 73 0 82 0 56 81 0 85 324 0 2 0
NEB 0 0 0 0 0 0 3 0 0 0 0 3 0 0 0 0 0 0

0

5000

10000

15000

20000

25000

30000

35000

40000

2019181615141312111087654321

a
v
e
ra

g
e
 m

a
k
e
s
p
a
n

greedy heuristics

0

5000

10000

15000

20000

25000

30000

35000

40000

2019181615141312111087654321

a
v
e
ra

g
e
 m

a
k
e
s
p
a
n

greedy heuristics

0

5000

10000

15000

20000

25000

30000

35000

40000

2019181615141312111087654321

a
v
e
ra

g
e
 m

a
k
e
s
p
a
n

greedy heuristics

0

5000

10000

15000

20000

25000

30000

35000

40000

2019181615141312111087654321

a
v
e
ra

g
e
 m

a
k
e
s
p
a
n

greedy heuristics

0

5000

10000

15000

20000

25000

30000

35000

40000

2019181615141312111087654321

a
v
e
ra

g
e
 m

a
k
e
s
p
a
n

greedy heuristics

0

5000

10000

15000

20000

25000

30000

35000

40000

19181615141312111087654321

a
v
e
ra

g
e
 m

a
k
e
s
p
a
n

greedy heuristics

20

Fig. 14. Average makespan of the greedy heuristics when Vtask = 0.6 and ETCs are machine original-consistent. (a) Vmachine = 0.1, (b) Vmachine = 0.2, (c)
Vmachine = 0.3, (d) Vmachine = 0.4, (e) Vmachine = 0.5, (f) Vmachine = 0.6.
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Fig. 15. Average makespan of the greedy heuristics when Vtask = 0.6 and ETCs are machine partial-consistent. (a) Vmachine = 0.1, (b) Vmachine = 0.2, (c)
Vmachine = 0.3, (d) Vmachine = 0.4, (e) Vmachine = 0.5, (f) Vmachine = 0.6.
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Fig. 16. Average makespan of the greedy heuristics when Vtask = 0.6 and ETCs are machine full-consistent. (a) Vmachine = 0.1, (b) Vmachine = 0.2, (c)
Vmachine = 0.3, (d) Vmachine = 0.4, (e) Vmachine = 0.5, (f) Vmachine = 0.6.
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Fig. 17. Comparison between H3 and H15 along the increase of Vmachine
when Vtask = 0.6.

Tables 10 through 12 record the NB and NEB of the
heuristics used for the ETCs in this situation, with ma-
chine original-consistency, machine partial-consistency and
machine full-consistency, respectively. Figs. 14 through 16
show the average makespan of the heuristics applied to the
ETCs in this situation, also with machine original-consistency,
machine partial-consistency and machine full-consistency,
respectively.

The results from this experiment part coincide with that
in Section 5.1. By calculating the average makespan of H3
minus that of H15 along the increase of Vmachine for three
types of machine consistency, Fig. 17 shows that the supe-
riority of H15 over H3 becomes weaker along the decrease
of dtask (dtask decreases with the increase of Vmachine when
Vtask is fixed), because the average makespan of H3 minus that
of H15 decreases monotonically in this situation. By calcu-
lating the average makespan of H15 minus that of H16 along
the increase of Vmachine for three types of machine consis-
tency, the line for machine full-consistency in Fig. 18 is always
above y = 0, which also indicates that H16 is better than H15
when ETCs are machine full-consistent. Fig. 18 also shows
that the line for machine partial-consistency is in the mid-
dle of the other two lines, which coincides with the situations
in Fig. 13.

5.3. Summary of experiment

Based on the analysis of the experiment results, two conclu-
sions can be drawn:

1. H15 is the best among all the heuristics with two exceptions:
• H3 acts better than H15 when Vtask and Vmachine are both

small at the range of [0.1, 0.2].
• H16 outperforms H15 when dmachine reaches 1 (machine

full-consistency).
2. The superiority of H15 over H3 demonstrates more clearly

along the increase of dtask. This conclusion is regardless of
dmachine.
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Fig. 18. Comparison between H15 and H16 when Vtask = 0.6.

The above conclusion coincides with the previous analysis in
Section 2: if the task with a bigger task effort is mapped at
the end, it is more likely to break the balance of loads among
machines and generate a worse mapping result. Additionally,
when the increase of Vtask and dtask enlarges the heterogeneity
of task execution times among the given tasks on each ma-
chine, this phenomenon happens more frequently. Hence, this
conclusion holds.

Therefore, for a practical mapping problem Algorithm 5.1
generates the best fast greedy heuristic according to different
types of a given ETC.

Algorithm 5.1 The best fast greedy heuristic
1: if The ETC is machine full-consistency then
2: return H16
3: else
4: if Vtask and Vmachine of the input ETC are both small

then
5: return H3
6: else
7: return H15
8: end if
9: end if

6. Conclusions

The fast greedy mapping heuristic is important to the HC en-
vironments when the scheduling process performs during the
execution of mapped tasks. In this study we introduce the con-
cept of task consistency. We claim that this trait is significant in
distinguishing the full functions of different mapping heuristics
as it is closely related to the load balance of different machines.
We claim that both task consistency and machine consistency
must be considered to tackle the mapping problem. We claim
further that previous works only considered machine consis-
tency, and task consistency was ignored. In this paper, we inves-
tigated 20 fast greedy algorithms, including 17 newly proposed
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heuristics, and compared them within a unified ETC model with
four parameters: task consistency, machine consistency, task
heterogeneity and machine heterogeneity. The goal of this study
was to give an insight into the circumstances when a specific
greedy heuristic would outperform the other 19 greedy heuris-
tics. Based on the experimental results, we mainly identified
that H15 with the support of a task priority graph outperforms
the other heuristics, including min–min, in most situations.

During the experimental process, we also found that the
COV-based generating method for ETCs is better than the
widely used range-based method of previous studies, since it
provides greater control over spread of the execution time val-
ues. The systematic comparison method used in this paper, con-
sidering both task consistency and the other three parameters
of an ETC, provides a general approach to study the mapping
heuristics and can be used to conduct further investigations in
this area.
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