Available online at www.sciencedirect.com

*,“ ScienceDirect QuUTURE

@ENERATION
@®OMPUTER

sl ® B
SOYSTEMS
ELSEVIER Future Generation Computer Systems 23 (2007) 84-91
www.elsevier.com/locate/fgcs

Distributed data mining in grid computing environments

Ping Luo®P, Kevin Lii®*, Zhongzhi Shi?, Qing He?

4 Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, 100080 Beijing, China
Y Graduate School of the Chinese Academy of Sciences, 100080 Beijing, China
€ Brunel University, Uxbridge UB8 3PH, UK

Available online 6 June 2006

Abstract

The computing-intensive data mining for inherently Internet-wide distributed data, referred to as Distributed Data Mining (DDM), calls for the
support of a powerful Grid with an effective scheduling framework. DDM often shares the computing paradigm of local processing and global
synthesizing. It involves every phase of Data Mining (DM) processes, which makes the workflow of DDM very complex and can be modelled only
by a Directed Acyclic Graph (DAG) with multiple data entries. Motivated by the need for a practical solution of the Grid scheduling problem for the
DDM workflow, this paper proposes a novel two-phase scheduling framework, including External Scheduling and Internal Scheduling, on a two-
level Grid architecture (InterGrid, IntraGrid). Currently a DM IntraGrid, named DMGCE (Data Mining Grid Computing Environment), has been
developed with a dynamic scheduling framework for competitive DAGs in a heterogeneous computing environment. This system is implemented
in an established Multi-Agent System (MAS) environment, in which the reuse of existing DM algorithms is achieved by encapsulating them into
agents. Practical classification problems from oil well logging analysis are used to measure the system performance. The detailed experiment
procedure and result analysis are also discussed in this paper.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Distributed data mining; Directed acyclic graph; InterGrid; IntraGrid; Multi-agent system environment

1. Introduction distributed datasets, aiming to generate global patterns from the
union set of locally distributed data. However, the security issue
among different local datasets and the huge communication
cost in data migration prevent moving all the datasets to a public
site. Thus, the algorithms of DDM often adopt a computing
paradigm of local processing and global synthesizing, which
means that the mining process takes place at a local level
and then at a global level where local data mining results
are combined to gain global findings. Furthermore, the local
processing often concerns multiple phases of data mining,
including preprocessing, training and evaluation. The diversity
of algorithms in each mining phase makes the DDM workflow
so complex that it requires a DAG to model it.

This paper concerns the development of a scheduling
framework on a two-level Grid architecture illustrated in Fig. 1
for complex DDM workflows. In the two-level Grid the low
level is an IntraGrid while the high level is an InterGrid.

With the vast improvements in wide-area network perfor-
mance and powerful yet low-cost computers, Grid computing
has emerged as a promising attractive computing paradigm. The
underlying principle of a computational Grid is the notion of
providing computing power transparently in an analogy with
electrical power. It aims to aggregate distributed computing re-
sources, hide their specifications and present a homogeneous
interface to end users for high performance or high through-
put computation. Thus, instead of computing locally, users dis-
patch their tasks to the Grid and use the remote computing re-
sources. To achieve the promising potentials of computational
Grids, an effective and efficient scheduling framework within
Grids is fundamentally important.

Recently, DDM has attracted lots of attention among the data
mining community [1]. DDM refers to the mining of inherently

* Corresponding author. Tel.: +44 1895203122; fax: +44 1895 203 149. IntraGrid A typical IntraGrid topology exists within a single

E-mail addresses: luop@ics.ict.ac.cn (P. Luo), kevin.lu@brunel.ac.uk organization. This organization could be made up of
(K. Li). many computers, which are connected by a private

0167-739X/$ - see front matter (© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2006.04.010

http://www.elsevier.com/locate/fgcs
mailto:luop@ics.ict.ac.cn
mailto:kevin.lu@brunel.ac.uk
http://dx.doi.org/10.1016/j.future.2006.04.010

P. Luo et al. / Future Generation Computer Systems 23 (2007) 84-91 85

External Scheduling

Internal Scheduling

Fig. 1. Two-level architecture of an InterGrid [2].

high-speed local network. The primary characteristic
of an IntraGrid is the bandwidth guarantee on the
private network.

InterGrid An InterGrid is an Internet-wide Grid, consisting
of multiple IntraGrids connected by WAN. Due to
WAN connectivity the communication speed between
IntraGrids could be comparably slow.

Our approach for scheduling complex DDM DAG is
performed in two phases: external scheduling and internal
scheduling. They are involved with InterGrids and IntraGrids,
respectively. Issues such as scalability, flexibility, and
adaptability are critical for a practical wide-area deployment
of Grid systems, which require an efficient and effective
scheduling framework. That is the motivation of this study.

The arrangement of the rest of this paper is as follows.
Section 2 describes the workflow of distributed classification
and formalizes the scheduling problem. Section 3 presents
the two-phase scheduling framework, including the external
scheduling at the InterGrid level and the internal scheduling
within an IntraGrid. Section 4 evaluates the performance
of the developed DM IntraGrid by real-world datasets for
classification. The related work and conclusions will be given
in Section 5. The implementation issues of this DM IntraGrid
in the multi-agent system environment is omitted due to space
limitations.

2. Workflow of DDM: A computing paradigm of local
processing and global synthesizing

DDM is the process of performing data mining in distributed
computing environments, where users, data, hardware and data
mining software are geographically distributed. It emerges as
an area of research interest to deal with naturally distributed
and heterogeneous databases and then to address the scalability
bottlenecks of mining very large datasets [3]. A number
of distributed algorithms have been developed for different
DDM tasks, including distributed classification, clustering and
association [1]. The fundamental concept of these algorithms
is that each local dataset is mined individually and the local
patterns obtained are then combined to produce global patterns
of the entire data. Thus, they mostly adopt the computing
paradigm of local processing and global synthesizing for

Data Mining Process

Normalization Discretization Attribute
Phase Phase Reduct
Phase
step | step |

on Sets After

Evaluation Measurement

A A

step iy step i, step ny

Meodels And Predicting Results

7N
N\
vd

9

f

NV}

Preprocessing Phase Training&Testing Evaluation

Phase Phase

Fig. 2. Data mining process in local processing.

different DDM tasks. Because this computing paradigm is
generally adopted in DDM, we aim to present an effective Grid
scheduling framework for it. In the following, a workflow of
distributed classification is given as the running example of our
Grid application.

2.1. Distributed classification: A running example

The DM workflow for classification in Fig. 2 aims to
find the optimal local classification pattern for the local
dataset. It is a complex, highly dynamic, and resource-intensive
process, which consists of several different phases. In each
phase, many different algorithms are available with different
parameters. The workflow in Fig. 2 consists of preprocessing,
training&testing and evaluation phase. The preprocessing
phase can be subdivided into three sequential sub-phases of
normalization, discretization, and attribute reduction based on
a rough set. The mining steps within a phase are optional
operations with different performances. For convenience and
clarity, we give the following definitions.

Definition 2.1 (DM Step). A DM step corresponds to a
particular algorithm to be executed, provided a dataset and
a certain set of input parameters for it. Each DM step A4 is
described as a quad:

A= (A, F,D,P)

where A is the data mining algorithm, F is the data mining
phase that contains the algorithm A, D is the input dataset and
P is the vector of algorithm parameters.

Let Ay = (A1, Fi, Dy, Py) and Ay = (Az, Fy, Da, Py,
Ay = Ayifandonlyif Ay = Ay, Fi = F,, Dy = Dy, Py = P.

Definition 2.2 (DM Path). Let Ay = (A1, F1, Dy, Py). ...,
Ay = (Ag, Fy, Dy, Pr), DM Pathis A = (Ay, ..., Ax), where
Fi(1 < i < k) is the i-th phase of the whole k-phase data
mining process.

In Fig. 2, a DM path can be easily obtained after
we select a DM step from each mining phase. If there
are ni,np,n3, ng different DM steps in the four phases
of normalization, discretization, attribute reduction and
training&testing respectively, the number of all possible DM

86 P. Luo et al. / Future Generation Computer Systems 23 (2007) 84-91

Fig. 3. The DAG of classification workflow.

paths would be n; x ny X n3 x ngq according to the Multiply
Theorem. Along a DM path, a mining step transfers its output
to the following step until the path terminates and the final result
would be obtained. Then, using the training and validation
datasets as an input of the DM path, a measurement will be
obtained for this path according to certain evaluation criteria.
For classification problems, the evaluation measurements could
be accuracy, weighted accuracy and AUC (Area Under Curve),
etc. After exhaustively evaluating all the DM paths, ranks of all
resultant patterns for all DM paths are generated.

After local processing, the global synthesizing begins. The
combining techniques include voting, arbitrating, combining
and stacked generalizer, etc. However, the computing flow in
this process is much simpler than that in local processing.

2.2. Workflow model of distributed data mining

We model the DM workflow as a weighted DAG, G =
G(V,E), where V = {vq, ..., v,} is a set of weighted nodes
and E is a set of weighted directed edges, representing data
dependencies and communications between nodes. A node in
the DAG represents a job (referred to as the corresponding DM
step), which must be executed without preemption on a host.
The weight of a node is referred to as the standard computation
cost, representing its execution time on a standard computer,
denoted by Agsandara(vi). €;; = (vi,v;) € E indicates
data transportation from job v; to v;, and |e;;| represents
communication cost between these two jobs if they are not
executed on the same machine. The precedence constraints
of a DAG require that a node should not start executing
before it gathers all the data from its predecessors. The node
without predecessors is called the entry of G. The node without
successors is called the end of G. The critical path of G is the
longest path (there can be more than one longest path) from an
entry to an end of G. The weight of this path is the sum of the
weights of the nodes and edges along this path. In the following,
a task refers to a DAG and a job refers to a node in a DAG.

Fig. 3 is the corresponding un-weighted DAG of the DM
process in Fig. 2. The direction of all the edges in Fig. 3 is
from the node in the upper layer to the one in the lower layer. If
we feed the datasets to the uppermost node in Fig. 3, after the
whole computation the lowermost node in this figure will output
the rank of all patterns for all DM paths, indicating the optimal

[L(JL‘;L] Data / [L(){.‘Ll' Data _’] """""""""" Local Data .f\]

Local DAG [Local DAG 2

Local DAG k

Fig. 4. The DAG of the whole distributed classification.

local pattern. Fig. 4 depicts the DAG of the whole distributed
classification with k local data sites. Thus, it is a k-entry DAG
with k& local sub-DAGs. Each local sub-DAG represents the
complex local processing, pictured in Fig. 3. The lowermost
node in this figure corresponds to the synthesizing processing
of local patterns and ultimately output the global pattern.

2.3. Problem definition and assumptions

Consider the following computation problem of DDM.
The local site, which owns local data for DDM, can be
scattered anywhere on the Internet. However, it has not enough
computing power to support the complex local processing.
This task of DDM is then fed to a dedicated InterGrid. The
InterGrid simultaneously supports the computation of multiple
competitive DDM DAGs. Our research objective is to propose
an effective and efficient scheduling framework for DDM
DAGs.

We assume that the InterGrid is connected via a two-level
hierarchical network as illustrated in Fig. 1. The first level is an
Internet-wide network (WAN) that connects local area networks
(LANSs) at the second level. A group of machines, connected
by LAN, form an IntraGrid. The local communication cost
between computers within an IntraGrid is ignored due to
the following reasons: (1) the network bandwidth within
an IntraGrid is high speed and (2) even if the volume of
the transferred data is large, its corresponding processing
time on a computer is much longer than its communication
time. However, the communication cost between IntraGrids is
considered because of the limited and dynamic bandwidth on a
WAN.

3. Two-phase scheduling for distributed classification
workflow in an intergrid

The Grid scheduling process of the workflow of distributed
classification consists of four steps: partition of distributed
classification workflow, external scheduling, internal schedul-
ing and synthesization of local patterns. Partition of distributed
classification workflow divides the whole k-entry DAG into
k sub-DAGs, each of which represents the corresponding lo-
cal processing. The external scheduling involves the process
of mapping the resultant sub-DAGs onto suitable IntraGrids
according to some criterion, considering communication costs
and IntraGrid credibilities. It is a WAN-wide and DAG-level
scheduling. After an IntraGrid receives a sub-DAG it maps the

P. Luo et al. / Future Generation Computer Systems 23 (2007) 84-91 87

jobs in the sub-DAG onto the computers in it, while keeping
the job precedence constraints. This is the process of internal
scheduling, which is LAN-wide and job-level scheduling. Af-
ter all the IntraGrids send their local patterns to a public site,
the synthesization process begins and eventually outputs the
global pattern. The entire scheduling process is described in Al-
gorithm 1.

The partition algorithm for DDM workflow in our running
example is straightforward. After segmenting the edges
between the lowermost node in Fig. 4 and all its predecessors,
the sub-DAGs are generated. The synthesization process is a
computation atom on a machine and does not concern about
task scheduling. So we omit the description of these two
processes.

Algorithm 1 Scheduling for the whole DAG of DDM
1: partition the k-entry DAG into k sub-DAGs
2: send the k sub-DAGs to the nearest external scheduler
3: the external scheduler maps these k sub-DAGs onto
suitable IntraGrids by external scheduling algorithm
4: after receiving a sub-DAG for executing the IntraGrid
processes it by internal scheduling algorithm

5: if a sub-DAG finished notification received then

6: store this notification

7. if all sub-DAGs finished then

8: select a IntraGrid j with the minimal communication
cost for moving all local patterns to this IntraGrid

9: synthesization of local patterns on IntraGrid j

10: return

11: end if

12: end if

3.1. External scheduling algorithm

In our scheduling framework we adopt the modification
of the external scheduling algorithm presented in [4]. This
algorithm processes through the sealed-bid auction and is
decentralized since an external scheduler resides on each
IntraGrid. Once an external scheduler receives a DAG, it sends
its bidding request with the Requested Task Response Time
(RTRT) to the other external schedulers for task auction. Those
bidders (external scheduler) reply to this request and send back
its Estimate Task Response Time (ETRT). After receiving all
replies it chooses the best IntraGrid with the minimal ETRT.

RTRT is the approximate estimation of the execution time
for a DAG. In our algorithm RTRT is estimated by the weight
of the critical path of a DAG. Because the DDM sub-DAG is
executed within an IntraGrid the communication cost is omitted
and then only the weights of nodes are counted for this critical
path. The ETRT is determined by three issues: RTRT, Network
Transfer Rate (NTR) and Average IntraGrid Credibility (AIC).

IntraGrid Credibility (IC) represents the computing reliabil-
ity of that IntraGrid. After a DAG is completed we can obtain
the Actual Task Response Time (ATRT). Then IC is computed

by (1)
ATRT;

IC; ;= —2/
"/ ETRT; ;

6]

where IC; ; is the IC of IntraGrid i for DAG;, ATRT; ; is the
actual task response time of DAG on IntraGrid i, and ETRT; ;
is the estimate task response time of DAG; on IntraGrid i.

The AIC is a weighted average that is shown in (2). The
initial AIC is set to be 1

AIC; = old_AIC; - (1 —a) +1C; ; - «)

where AIC; is the AIC of IntraGrid j, old_AIC; is the previous
AIC of IntraGrid j, IC; ; is the IC of IntraGrid i for DAG ;.
and @ (0 < o < 1) is the coefficient, indicating the tradeoff
between previous and current credibilities. The more « is set to
be, the more AIC; represents the current credibility of IntraGrid
j. In [4] o is set to be 0.01. However, we suggest o be a
much bigger value to let AIC; indicate the current computing
reliability of IntraGrid j better.

The external scheduler decides which IntraGrid is selected
by ETRT, computed by (3)

Task_Data_Size;

ETRT; ; = (RTRT,- + NTR;
»J

> - AIC; 3)
where ETRT; ; is the estimate task response time of task i
on IntraGrid j, RTRT; is the requested task response time of
task i, AIC; is the AIC of IntraGrid j, Task_Data_Size; is
the data size of task i, and NTR; ; is the network transfer
rate between IntraGrid k and IntraGrid j. The pseudo-code of
external scheduling for a DAG is presented in Algorithm 2.

Algorithm 2 External Scheduling
1: if a DAG submitted then
2: for all external schedulers participating in bidding do

3: send bidding request with RTRT to external sched-
ulers
4: end for
5. if a bidding reply received then
6: store the bidding reply
7: if all bidding replies for this task are received then
8: IntraGrid i = IntraGrid with the minimal ETRT
9: send task to IntraGrid i
10: end if
11: end if
12: end if

3.2. Internal scheduling algorithm

An IntraGrid is a heterogeneous computing (HC) environ-
ment, which consists of multiple computers with different con-
figurations, connected by a high-speed LAN. Thus, the existing
research results from the field of HC can be adopted in schedul-
ing jobs from DAGs. The research focus of HC is the design of
an algorithm, which orchestrates all the computing hardware to
perform an application that has diverse computational require-
ments [5] so as to minimize the completion time, i.e., the overall
execution time of the application.

This internal scheduling, in fact, can be described as a
problem of dynamic scheduling for competitive DAGs. It has
been proved, in general, to be NP-complete [6], thus requiring

88 P. Luo et al. / Future Generation Computer Systems 23 (2007) 84-91

Table 1
Machine configuration list

Machine type index CPU Main memory Machine amount

1 3 GHz 512M 5
2 2.8 GHz 512M 1
3 2.4 GHz 1024 M 1
4 2.2 GHz S512M 1
5 731 MHz 448 M 1

the development of heuristic techniques [7,8] for practical
usage. The adopted internal scheduling algorithm in this paper
is based on our previous work on scheduling data mining
workflows in a heterogeneous computing environment [9],
which is designed to satisfy the issues of the characteristic of
DM workflows. Based on an approximate estimation of job
execution time, this algorithm first maps DM jobs to machines
in a decentralized and diligent manner. Then the performance
of this initial mapping can be improved through job migrations
when necessary. The scheduling heuristic used in it considers
the factors of both the minimal completion time criterion and
the critical path in a DAG. These two aspects are integrated
and implemented in the initial job mapping process and the
job execution control process, respectively. The detail of this
internal scheduling algorithm is presented in [9].

4. Experimental procedure and results

We first focus on the implementation of the DM IntraGrid,
involving internal scheduling only. This IntraGrid, named
DMGCE (Data Mining Grid Computing Environment), is
developed in a MAS environment MAGE [10] so as to measure
the system performance and then to provide this Grid service
practically. The evaluation of this system is carried out with
practical DM data from well logging analysis. Well logging
analysis plays an essential role in petroleum exploration and
exploitation. It is used to identify the pay zones of gas or oil
in the reservoir formations. The performance metrics in the
experiments include task response-time, system throughput and
system efficiency defined in the following.

4.1. Experimental procedure

In these experiments 9 machines with different configura-
tions are used. The main configurations of these machines are
listed in Table 1. To measure the system performance based on
the metrics mentioned above, a DM task for classification de-
noted by G*, is constructed for the whole experimental process.
The corresponding DAG of this task, which contains 16 jobs, is
isomorphic with the DAG in Fig. 3. After removing the end
node of the DAG it becomes a tree, which indicates that all the
successors of an internal node in the tree can be mapped once
its execution is completed. The input data for this DAG is from
the well logging analysis. This data contains 2000 labeled ex-
amples with 10 numeric condition attributes.

An approximate running time estimation for each job in
G* is generated by the following process. We regard one of

the machines in Machine Type 1 of Table 1 as the standard
computer. First we execute a group of benchmark DM jobs on
each machine i and record the actual total execution time of
these jobs, denoted by A;, which would give a performance
assessment of the machine i. Next, G* is executed on the
standard machine and the actual running time of each job
A, denoted by Agtandard(A), is recorded. Thus, the average
execution time of DM jobs of a certain algorithm A on the
standard machine can be computed in (4)

Z Astandard (/1)
AcA

Astandard (A) = = (4)
|A]

where A contains all the jobs performing algorithm A with
different parameters or input data in G*. And the running time
of the average execution time of DM jobs of algorithm A on the
other machine i can be estimated by (5)

Ai(A) = p; - Astandard (A))
where p; = 1A’d ' In our system the machine heterogeneity,
measured by the standard deviation of all p;, is 2.3835. Ihen,
in our experiment the running time of a job A(A, F, D, P) on

machine i is approximately estimated by A; (A) as shown in (6)
Ai(A(A, F, D, P)) = 4 (A). (©)

This estimation method considers only the algorithm type it
performs, and ignores the other elements in the quad of 4, so
as to check the tolerant performance of the internal scheduling
algorithm on the approximate time estimations of DM jobs.
These experiments are performed in two parts. In the first
part, the 4 machines from Machine Type 1 are used to form
a homogeneous system, in order to measure task response time
and system throughput versus the number of joining machines
with the same configuration. Let the arrival time of the task
G be a(G), and the completion time of G be ¢(G), then the
response time of G is ¥(G) = c(G) — a(G). The system
throughput is defined by the number of G*, which is completed
by the system in a fixed time.

The second part of the experiment is to evaluate the
scheduling performance in a heterogeneous system, which
contains all the 9 machines listed in Table 1. In these
experiments exponential distribution is used to generate the
task sequence, including 100 tasks of G*. These tasks are
assigned under two inter-arrival times, f; = 25 seconds and
tn = 50 seconds. The task arrival time is generated, which
satisfies “=1 < 0.06, where t, is the actual average inter-
arrival time of the task sequence and 7 is the expected inter-
arrival time. We record the average response time of the tasks
in the sequence and compute the weighted system efficiency
in (7), which considers the machine heterogeneity in an HC
system.

l .
Z Icomputation (i)

Icomputation i=1 o
Nweighted = = i (N
ttOtal Z fotal (7)
i

i=1

P. Luo et al. / Future Generation Computer Systems 23 (2007) 84-91 89

: ' wi ihnuljuh migrul'i(m

250 with job migration]

. 200F 1
(5]
2
o

£ 150}]
o
g
&

2100 F i

50 i

0 . L . .
0 I 2 3 4 5

number of machines

(a) Response time versus homogeneous machines.

throughput (tasks/100sec)

0.5

0 1 . I 1
0] 2 3 4 5

number of machines

(b) Throughput versus homogeneous machines.

Fig. 5. The experimental results for homogeneous computing.

where fcomputation (£) 18 the system CPU time for the computation
on machine i, fa(7) is the total system CPU time on machine
i, [is the number of machines in our system, and p; is the same
as the one in (5).

All the above experiments are performed under two
situations, with and without job migrations after initial
mapping, and repeated five times. The average values of these
metrics are listed in Section 4.2.

4.2. Experimental results

Fig. 5(a) and (b) show the results from the first part of the
experiments. Fig. 5(a) illustrates that the response time of a
single task G* decreases along with the increase of the number
of machines. However, the response time decreases in a non-
linear manner and eventually reaches a minimal level, because
in our application the minimal computing granularity is a job,
which could not be broken down any further for parallelization.
In theory, the minimum response time of a DAG is the weight
sum of the critical path in the DAG. Fig. 5(b) shows that the
throughput of the HC system increases close to linear along
with the increase of the number of joining machines. These two

1200 T —————
with job migration £
without job migration &
1000 - 1
T 800F .
2
E]
S 600t 1
£
g
o
= 400 .
200 .
: i
50

inter-arrival time (sec)

(a) Average response time of the tasks in task sequence.

100 — T
. with job migration gxxxs
: th job migrat
2 without job migration
. 80 E
BQ
<
£ :
3 60 KX 1
g o
- B
o 092028,
2 B
= 155
S0 a0 F eoessopiex: 4
2 12505
= PR
z eetele!
odetete
eletele!
ofedele
[oetele!
F 1504 4
20 e
PR
edetetels
oredes!
edetete®
ofetele!
KR5S
0 RS

inter-arrival time (sec)

(b) Weighted efficiency when executing the tasks in task sequence.
Fig. 6. The experimental results for heterogeneous computing.

figures also show that the use of job migration could improve
the system performance in terms of task response time and
system throughput.

The results from the second part of the experiments can
be seen in Fig. 6(a) and (b). In Fig. 6(a) it can be found that
through the use of the job migration technique the average
response times of the 100 tasks decrease 5.58% and 13.21%
for the cases of 25-second inter-arrival and 50-second inter-
arrival, respectively. The weighted efficiency of the HC system
is also improved through job migration technique, as shown in
Fig. 6(b).

5. Related work and conclusions
5.1. Related work

The issues of building a computational Grid for Data Mining
have been recently addressed by a number of researchers.
WEKA4WS [11] adapts the Weka toolkit to a Grid environment
and exposes all the 78 algorithms as WSRF-compliant Web
Services. FAEHIM (Federated Analysis Environment for
Heterogeneous Intelligent Mining) [12] is Web Services based

90 P. Luo et al. / Future Generation Computer Systems 23 (2007) 84-91

on a toolkit of DM and mainly focuses on the composition
of existing DM Web Services by Triana problem solving
environment [13]. The Knowledge Grid [14,15] is a reference
software architecture for geographically distributed knowledge
discovery systems. It is built on top of a computational Grid
of Globus and uses basic Grid services to implement the
DM services on connected computers. A visual environment
for Grid application (VEGA) is developed in this system,
supporting visual DM plan generation and automatic DM plan
execution. GridMiner [16] focuses its effort on data mining and
On-Line Analytical Processing (OLAP), two complementary
technologies, which, if applied in conjunction, can provide
a highly efficient and powerful data analysis and knowledge
discovery solution on the Grid. Discovery Net [17] builds
the world’s first e-Science platform for scientific discovery in
various fields.

To make good use of the computing hardware in
heterogeneous systems for DM workflow a scheduling
framework is urgently needed. Although this computing
paradigm can be achieved by exposing all the DM algorithms
as Web Services on every host in this system or by dynamic
Web Service deployment, however, the scheduling framework
for DM DAG applications, in general, has drawn very little
attention except for the scheduling heuristics mentioned in [15].
Paper [15] also emphasizes the importance of a scheduling
algorithm in Knowledge Grid and uses the concept of abstract
hosts to represent any computing host.

5.2. Conclusions

In this paper a novel two-phase scheduling framework, based
on the two-level architecture of an InterGrid, is presented
for the Internet-wide distributed data mining, which shares
the computing paradigm of local processing and global
synthesizing. The external scheduling for DDM sub-DAGs
operates through the sealed-bid auction, with the consideration
of communication costs and IntraGrid credibilities. The internal
scheduling for jobs in a sub-DAG is formalized as a problem
of scheduling for competitive DM DAGs in heterogeneous
computing environments. According to the characteristics of
DM workflows, a new internal scheduling framework is
adopted based on our previous work [9] with three features:
totally decentralized, the hybrid heuristic scheme, and the
technique of job migration after mapping. The DM IntraGrid
with this internal scheduling algorithm has been implemented
in a multi-agent system environment. Its performance has also
been tested by real-world DM data, which is demonstrated by
our experiments.

Acknowledgements

Our work is supported by the National Science Foundation
of China (No. 60435010), the National 863 Project (No. 2003
AA115220), the National 973 Project (No. 2003CB317004)
and the Nature Science Foundation of Beijing (No. 4052025).
Kevin Lii would like to show his appreciation to Wang Kuan
Cheng Science Foundation, Chinese Academy of Sciences for
the funding to enable him to conduct this research.

References

[1] Y. Fu, Distributed data mining: An overview. IEEE TCDP newsletter,
2001.

[2] Y. Zhu, A survey on grid scheduling systems, Technical Report, Computer

Science Department of Hong Kong University of Science and Technology,

2003.

S. Krishnaswamy, S. Loke, A. Zaslavsky, Supporting the optimization

of distributed data mining by predicting application run times, in:

Proceedings of the Fourth International Conference on Enterprise

Information Systems, Ciudad Real, Spain, 2002, pp. 374-381.

H. Chen, M. Maheswaran, Distributed dynamic scheduling of composite

tasks on grid computing systems, in: Proceedings of the 11th IEEE

Heterogeneous Computing Workshop, 2002.

[5] Y.-K. Kwok, I. Ahmad, Static scheduling algorithms for allocating
directed task graphs to multiprocessors, ACM Computing Surveys 31 (4)
(1999) 406-471.

[6] D. Fernandez-Baca, Allocating modules to processors in a distributed
system, IEEE Transaction on Software Engineering 15 (11) (1989)
1427-1436.

[7]1 M. Iverson, F. Ozguner, Dynamic, competitive scheduling of multiple
dags in a distributed heterogeneous environment, in: Proceedings of the
Eighth Heterogeneous Computing Workshop, 1999.

[8] R. Sakellariou, H. Zhao, A hybrid heuristic for dag scheduling on

heterogeneous systems, in: Proceedings of the 13th Heterogeneous

Computing Workshop, 2004.

P. Luo, K. Lii, Q. He, Z. Shi, Scheduling for data mining workflows

in a heterogeneous computing system, Technical Report, Institute

of Computing Technology, Chinese Academy of Sciences, 2006.

http://www.intsci.ac.cn/users/luop/.

[10] Z. Shi, H. Zhang, Y. Cheng, Y. Jiang, Q. Sheng, Z. Zhao, Mage:
An agent-oriented programming environment, in: Proceedings of IEEE
International Conference on Cognitive Informatics, 2004, pp. 250-257.

[11] D. Talia, P. Trunfio, O. Verta, Wekadws: a wsrf-enabled weka toolkit for
distributed data mining on grids, in: Proceedings of the 9th European
Conference on Principles and Practice of Knowledge Discovery in
Databases, Porto, Portugal, 2005.

[12] Ali Shaikh Ali, Omer F. Rana, Ian J. Taylor, Web services composition
for distributed data mining, in: Proceedings of International Conference
on Parallel Processing Workshops, 2005, pp. 11-18.

[13] The Triana Problem Solving Environment, http://www.trianacode.org.

[14] M. Cannataro, D. Talia, P. Trunfio, Distributed data mining on the grid,
Future Generation Computer Systems 18 (8) (2002) 1101-1112.

[15] M. Cannataro, A. Congiusta, A. Pugliese, D. Talia, P. Trunfio, Distributed
data mining on grids: Services, tools, and applications, IEEE Transactions
on Systems, Man and Cybernetics 34 (6) (2004) 2451-2465.

[16] GridMiner, http://www.gridminer.org.

[17] Discovery Net, http://www.discovery-on-the.net.

3

—

[4

—

9

—

Ping Luo is a Ph.D. student in the Intelligent Science
Group at the Institute of Computing Technology at the
Chinese Academy of Sciences. His research interests
include algorithms and computing architecture of
distributed data mining, machine learning, and novel
applications in data mining.

Dr. Kevin Lii is a senior lecturer at Brunel University,
Uxbridge, UK. He has been working on a number of
projects on parallel databases, data mining and multi-
agent systems. His current research interests include
multi-agent systems, data management, data mining,
distributed computing and parallel techniques. He has
published more than 40 research papers.

http://www.intsci.ac.cn/users/luop/
http://www.trianacode.org
http://www.gridminer.org
http://www.discovery-on-the.net

P. Luo et al. / Future Generation Computer Systems 23 (2007) 84-91 91

Zhongzhi Shi is a Professor at the Institute of
Computing Technology, the Chinese Academy of
Sciences, leading the Research Group of Intelligent
Science. His research interests include intelligence
science, multi-agent systems, semantic Web, machine
learning and neural computing. He has won a 2nd-
Grade National Award at Science and Technology
Progress of China in 2002, and two 2nd-Grade Awards
at Science and Technology Progress of the Chinese
Academy of Sciences in 1998 and 2001, respectively. He is a senior member of
IEEE, member of AAAI and ACM, Chair for the WG 12.2 of IFIP. He serves
as Vice President for Chinese Association of Artificial Intelligence, Executive

President of Chinese Neural Network Council.

Qing He received the Ph.D. degree from Beijing
Normal University in 2000. Until 1997, he worked
at Hebei University of Science and Technology
as an associate professor. He is currently an

. associate professor at the Institute of Computing and

Technology, CAS. His interests include data mining,
machine learning, classification, fuzzy clustering.

	Distributed data mining in grid computing environments
	Introduction
	Workflow of DDM: A computing paradigm of local processing and global synthesizing
	Distributed classification: A running example
	Workflow model of distributed data mining
	Problem definition and assumptions

	Two-phase scheduling for distributed classification workflow in an intergrid
	External scheduling algorithm
	Internal scheduling algorithm

	Experimental procedure and results
	Experimental procedure
	Experimental results

	Related work and conclusions
	Related work
	Conclusions

	Acknowledgements
	References

