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probability and distinguish it with local transition probability used in previous work. In modeling the third
feature, we employ a continuous time distribution to depict the time range of latent topics. The combination
of the global transition probability and the temporal information helps to refine the mixture distribution
over topics for temporal sequence analysis. We present results on the data of distributed denial-of-service
attack and system call traces, qualitatively and quantitatively showing improved topics, better next activity
prediction and sequence clustering.
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Topic Modeling for Sequences of Temporal Activities

Zhi-Yong Shen?, Ping Lu@, Yuhong Xiong, Jun Suh2, Yi-Dong Shen
!institute of Software, CAS
2 Graduate University of Chinese Academy of Sciences
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Abstract symbol whilet is the timestamp ofy, andV is the finite set
of all activity symbols. Asequence of temporal activitiés
Temporally-ordered activity sequences are popular in then an ordered set of activities occurred within some time
many real-world domains. This paper presents an LDA- range, denoted by = ((w1,t1),---, (wn,tn)), Where
style topic model for sequences of temporal activities thatw,, € V, andt,, <t,; forn=1,---, N — 1. Due to the
captures three features of such sequences: 1) the counts ofvide applications of temporal activity sequences we focus
unigue activities, 2) the Markov transition dependence and on the topic modeling method for such kind of data in this
3) the absolute or relative timestamp on each activity. In study. Specifically, given a set of sequences of temporal
modeling the first two features we propose the concept ofactivities, we aim to find the latent topics within these
global transition probabilityand distinguish it withlocal sequences by probabilistic topic models [3], [11]. Such
transition probabilityused in previous work. In modeling models try to assign a latent topic to each activity and then
the third feature, we employ a continuous time distribution achieve more compact representation of the sequences.
to depict the time range of latent topics. The combination  The latent topics within a sequence of temporal activity
of the global transition probability and the temporal infor  sequence may be expressed in the following three features:
mation helps to refine the mixture distribution over topics 1) the counts of unique symbols (global information), 2)
for temporal sequence analysis. We present results on theéhe Markov transition dependence (local information) and
data of distributed denial-of-service attack and systeith ca 3) the time-stamps attached to the symbols (temporal in-
traces, qualitatively and quantitatively showing imprdve formation). To capture the characteristics in these festur
topics, better next activity prediction and sequence clus- several probabilistic topic models have been applied or
tering. proposed for profiling activity sequences. First, Huynh
et al. [7] successfully employ Latent Dirichlet Allocation
(LDA) [3] to discovery patterns in the sequences of daily
human activities, in which LDA only models the counts
of unique words (Feature 1) in a sequence and ignores
the activity order. Next, to model the Markov dependence
Temporally-ordered activity sequences are popular in (Feature 2) directly Simplicial Mixture of Markov Chain
many real-world domains. For example, web access traceYSMMC) [4] and the Topic Model proposed in [13],
of users are recorded as logs in the servers; multi-stepexpressed by the conditional probability of a symbol given
network intrusions may trigger off alert sequences by the its very previous state, are proposed and applied into the
Intrusion Detection Systems. These activity sequences areapplications in web page browsing, word processor and
represented as a sequence of symbols. Additionally, thetelephone usage data to show their ability of sequential ac-
numerical data streams, such as the data from humartivity profiling especially on predicting incoming actiigs.
behavior sensors [7] and the temperature data from theFinally, Wang and McCallum proposed Topic Over Time
chillers in the data center [10], can also be converted into (TOT) [15] to capture the temporal information (Feature
the symbolic representations. Profiling such data may help3) by associating a continuous time distribution with each
to identify interesting latent patterns or malicious bebess  topic.
among them. Since none of the above models can capture all these
Such temporal data can be formulated as follows. A three features in temporal activity sequences, in this pape
temporal activityis a pair(w, t) wherew € V is an activity we aim at a uniform topic model which might capture more

|. Introduction



meaningful latent semantics in the data by considering all

these three features. To this end, we first propose a newsymp
concept ofglobal transition probabilitybased on transi- D,
tions of symbols (bigrams), and claim that it covers the &

TABLE I. Notations used in this paper
ol Description

the vocabulary of symbols, with size
number of topics

information from the first two features. Then, we injectthe number of symbols in the sequense
. . .o . w a symbol in vocabulary
temporal information on each activity into the generating . — «’ | a symbol transition where, w’ € V

the n-th observed symbol in sequense

the timestamp of botws, andwsn — ws nt1

the topic of bothws, andwsn — ws nt1

the multinomial distribution over topics

the multinomial distribution ovetv for topic z

the transition distribution fromw for topic 2

the multinomial distribution ovet — w’ for topic z
the temporal distribution of time for topie

process of the sequences. This way the proposed model of wsn
T-BiLDA is influenced by all the three features of temporal "
activity sequences. Finally, we present experimentaliesu
with two real-world data sets. On the databiftributed
Denial-of-ServicdDDoS) attack, we show that T-BiLDA

exactly re-constructs the attack scenario, in which each ,j’”ﬂ“/
attack phase exactly corresponds to one of the latent topics
and the roles of each computers, such as victim, compro-

mised computers and so on, are also exactly identified.The topic modeling is essentially to build a probabilistic
On the data ofsystem call traceswe show its micro  mixture model of overp(:|s) via learning the mixture
descriptive ability via next token prediction and its macro componenp(-|z) as well as estimating mixture proportion
descriptive ability via sequence clustering. The qualieat  (;|s). Various contents in the brackets pf-) lead to
results on the first data set and the quantitative resultsyarious probabilistic topic models, which are introduced

sn

0
Bew

z,w'|w

on the second one both show that T-BiLDA significantly
outperforms the other five baseline methods considered in
modeling sequences of temporal activities.

II. Topics over Transitions

In this section, we first give the formalized definitions of
global activity probabilitytogether withlocal and global
transition probabilityand propose the model of BiLDA for

in details as follows.

LDA [3] is a Bayesian network that generates docu-
ments using a mixture of topics. LDA ignores the order
of the words in a sequence. In its generative process, for
each documen¢, a multinomial distributiord,. = p(z|s)
over topics is randomly sampled from a Dirichlet with
parametera, and then to generate each word, a topic
z is chosen from this distribution, and a word, is
generated by randomly sampling from a topic-specific

modeling the transitions in the sequences. Then we discusgnultinomial distributiong..,. This model is aimed to learn

the properties of these probabilities.

Definition 1 (Global Activity Probability):The global
activity probability of the activity with symbolw € V
is defined as

f(w)

W) = ————.
W= 5w

Definition 2 (Local Transition Probability):The local
transition probability fromw to w’is defined as
Hw — )

p(w'|w) = 5

we Bw — w*)’
Definition 3 (Global Transition Probability)The
global transition probability fromw to w’ is defined as

’

plw — ') = A2 )

Zw*;u)*/ ﬂ(w* N 'LU*/) .

In the above three definitiorntg-) is the counting number
of the corresponding symbol or transition occurring. This
counting can be conducted within different context. For
example, if the counting is in a sequengeave obtain these
probabilities specific to the sequence, denotedh@s)
where the ” could bew, w'|w or w — w’. Analogously,

we can also compute(-|z) for each topicz when all
symbols or transitions are already assigned to the topics

the distribution over topid; for each sequenceands..,
for each topicz. The marginal distribution of document
in LDA can be represented as:

N k

p{wn}l_la,8.5) = [p(ola) (210, ) p(wn |8, z) A6
Jrew T Y o), ,

n=1z=1

1)

p(zls)  p(w|z)

where the mixture componep{w|z) for each topic and
the mixture proportiorp(z|s) for each document are de-
termined based on the observed global activity probability
p(wls).

SMMC [4] is proposed to generate the sequence with
m-th order Markov dependence. The generative process
of the sequences by this model with first-order Markov
dependence can be described as follows:

1) set multinomial distributior, ,,|,, for each topicz
and eachw € V;

2) for each sequence draw a multinomial distribution
s, from a Dirichlet priorc; then for then-th word
ws, N the sequence:

a) drawz,, fromd,.; and

b) drawws, from 3. . wjw, . .-
The model of SMMC is aimed to estimate the distri-
bution over topicst,. = p(z|s) for each sequence



(a) Number of transitions 3
f(a — a) t(a — b) f(a — c) g(b — a) g(b — b) g(b — ¢) f(c — a) g(c — b) g(c — ¢)

s1 92 1 1 1 1 1 1 1 1
s 992 1 1 1 1 1 1 1 1

(b) The local transition probability

7 0 N 20 N 0 N ) N 2 1 G N € 1O B (1 0 B G 0]

s1 9z L L I I I I s I
gbh 3 i i i i i 1 i

52 994 994 994 3 3 3 3 3 3

(c) The global transition probability

pla — a) p(a — b) p(la — c) p(b — a) p(b — b) p(b — c) p(c — a) p(c — b) p(c — ¢)

51 0.92 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
s 0.992 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

TABLE Il. The statistical numbers in the two example sequences

and 3. ./w = p(w'lw,z) for each topicz and each The model of BIiLDA is aimed to estimate the distri-
word w. Analogously, the marginal distribution of Markov  bution over topicd,. for each sequence and 3 .,
transitions in a sequencein SMMC is: for each topicz. Every entry inf. ., is actually the
No1 & probability that the corresponding transitien — w’ is
pwnirlend ) 5han s = foeie) JT 30 G100 pumyalun 5. 2) a0 generated given the topig, that is 8. w—w = p(w —
PTG e w'[2).
2
where the mixture componepfw’|w, z) and the mixture N1k
proportionp(z|s) are determined based on the observed *t“ ~ wnt1} e 80 = [role) U Ziﬂff)“”" — w118, ) do
local transition probability(w'|w, s). U e pw—in)

[©)
where the mixture componeni(w — w’|z) and the
mixture proportionp(z|s) are determined based on the
observed global transition probabilipfw — w’|s).

For the analysis of sequences with Markov dependence
exploiting the local transition probability(w’|w, s) by
SMMC might be better than considering th¢w|s) by
LDA. However, considering only(w’|w, s) is not enough
for this task. See the following two sequences with vocab- . .
ulary V = {a,b, c}: A. Discussion

s1=a, --,a,c0cCc b a,ca;
It is clear that global activity probability(w) is equal
s2 =a, e ,a,b,b,c,c b a,ca. to the normalizedag-of-wordsepresentation in text min-
ing, local transition probability(w’|w) corresponds to the
transition matrix in Markov chains, and global transition
robability p(w — w’) is essentially the normalizeohag-
f-transitions representation. Furthermore, froptw —
w’) we can estimate(w’|w) andp(w) directly, namely

993

As shown by Table 2(b) the local transition probabilities
of the two sequences are the same except on the first thre
entries. Therefore, the distributions over topics of these
two sequences will be very similar if we only consider
the local transition probability. However, the number of , pw — w') .
transitions occurring in the sequence might be the key pwfw) = S e plw — w*)’ p(w) ~ Zp(w —w’). (4)
factor to express the semantic. For example, in the above v
sequences the transitiom — a may represent some The approximation of the right equation in (4) is due to the
important features. For example, they may be the two fact that the counts of(w) andf(w — w’) are not exactly
successive alarms of network attack. Under this situationequal when the ending symbol of a sequence.ibvi-
the model of SMMC, considering only the local transition ously, this proximation is reasonable when the sequence is
probability, might fail to find thatsy is more likely to be long enough. lllustrated by Equation (4) we find that the
a sequence of network attack than global transition probabilityp(w — w’|s) considers the

In the following we propose the model of BILDA factors of both the local transition probabilipfw’|w, s)
(Binary LDA), which considers the global transition prob- and the global activity probability(w|s). As shown in
ability to generate the sequence. The key idea of BiLDA is Table 2(c), the global transition probabilities of the two
to consider any transition of two immediate tokensw’ sequences are quite different, thus, it is more possible to
in a sequence, denoted byw — w’ € VxV, as aword in distinguish the two sequences. Therefore, in this paper we
the bag-of-words model. Then the same generative processuggest using the global transition probability in tempora
as LDA are carried out to produce thisg-of-transitions activity profiling.



[I1. Topics over Temporal Activities

LTP > GTP
T-SMMC

Each activity in a temporal sequence is always attached
with a timestamp. This temporal information might be
another important factor to refine the topics. In this sectio
we propose the model of T-BiLDA, which injects the
temporal information into BILDA.

Abbreviations:

GAP: Global Activity Probability
LTP: Local Transition Probability
GTP: Global Transition Probability

%)
GAP > LTP | Z [ +time

A. Model Description

In T-BiLDA, topic discovery is influenced not only
by the co-occurrences of transitions, but also temporal Fig. 1. Summary of Topic Models of this pa-
information. We adopt the method in T-LBAL5] to inject per.
the temporal information into the generative process. This
method associates with each topic a continuous distributio
over time. We adopt normal distributia(-|zs., 02) to
express this time distribution in this study. The mean
parameteru, locates the topic: over the time horizon
while the standard deviationm, facilitates the time range
estimation. In each round of transition generation the B. Model Learning by Variational Infer-
current topic generates not only a transition according to ence
the global transition probabilities under this topic, blstoa
the timestamp associated to the transition according to the
time distribution on the topic. Specifically, the generativ
process of the T-BiLDA model can be described as follows:

1) draw multinomial distributions, ,—., = p(w —

exploit respectively. These six methods will be compared
for temporal activity modeling in the experimental section

We now estimatey, 3 andy = (u,0?) as parameters
and as well as the literatures [2], [11], [15] we simply fix
o to 1. There are some approximate inference techniques
p . ; available in the literature: variational methods, expéota
w |Z? over transitions for egchI topic; draw Normal propagation and Gibbs sampling. We choose a variational
distribution+,, for each topicz; . e Expectation Maximization (EM) procedure, which is the
2) for each sequence draw a multinomial distribution approach taken in [3], [14], [1], [2], [4]. We firstly conside

fs from a Dirighlet prior«; then for the transition T-LDA and introduce the learning of T-SMMC and T-
Wen — Ws nt1 IN the sequence: BiLDA later

a) drawz, from 6,,;
b) drawws, — wsn+1 from 3. ;
c) draw a timestamps,, from v, _ .

1) Variational E-step: Given a sequence of temporal
activity, the likelihood of the this observed sequence is

Although T-BiLDA adopts the similar method with T- N &
LDA model [15] to inject the temporal information into  L(a, 8,¢) = /p(9|a) H(Zp(zw)p(w”z?g)p(tn|z7¢))da
the model, the characteristics of the data used in these two S —
models are different. Each document used in the T-LDA )

model [15] is associated with only one timestamp, while 1he the parameters are estimated by maximizing
the symbols in a sequence are associated with different”(®/; %), which is intractable as with other LDA type
timestamps. Additionally, the time ranges of the temporal Models. Therefore, we carry out variational EM. Suppose
sequences greatly overlap while the timestamps of theW& have the variational distribution:
documents used in [15] overlap less. Thus, the temporal ~
Lr;f(r);?:etut)glelrlégiecge.mporal sequences can be fully utilized a(0, 717, ¢) = a(6]) H 4(zn|6n) ©)
With the similar method it is easy to extend the model
of SMMC into T-SMMC, which considers both local \here~ is a Dirichlet parameter vector with dimensién
transition probabilities and temporal information. Figdr ~ and eachy, parametrizes a multinormial distribution on
gives a summary of the topic models with the features theythe latent topics satisfying[Z,] = ¢p.

n=1

1The same with the model of TOT [15]. In Sections Il and V we Variational obiecti f . Wi d -
rename this model in order to indicate that this model is allstuthe ariational objective function. e need to maximize

LDA model plus the temporal information. the lower boundZ(-) of the log likelihood for a single



sequence: with the normalization factoEmw/ Bz,wﬂw/. To Iear?l
log L(a, 8,1) > L(v, 50, B,¥) = SMMC and T-SMMC we need an appropriate normal-
ization factor to make the topics to Markov chains:

3 S 3., Bzw—w. The forms of updating the other parameters
E lngaa + E 1ng2n9 + E 10gpwn Zrmﬂ w ' H
ol (6l)] ;::1 d (z0[6)] nz::l al (] ) for these models remain as the same.
N
+ > Eqllog p(tn|zn, )] + H(q) V. Data Sets
n=1

)

Note that the first tree terms and the entropy of the  We present experiments on two real-world data sets:
variational distributionH(q) are the same as the original the data of DDoS attack and system call traces. These two
LDA. Expand and maximize the lower bound of log data sets are use to conduct qualitative and quantitative
likelihood L(-) with respect top,,. and~.. We have evaluation respectively.

k
Gz o Bewn - Ntnlpiz, 02) - expl¥(7:) = ¥()_7:)] (8)  A. Data of DDoS Attack
z=1

N Usually, an attacker carries out a DDoS attack by ex-
Yz =0z + Z 28 ©) ploiting a group of machines in a network and identifies the
n=1 vulnerable ones among them as the DDa#npromised
where n. = 1,2,..,N, ¥ is digamma function and machinesThe intruder then loads cracking tools onto these

N (:|p=,02) is the normal probability density function with  compromised machines. Finally, with a single command
parameter), = (., 0?). Detailed derivations are givenin  the intruder instructs all the controlled machines to launc
the Appendix for completeness. flood attacks against a DDofctim. The inundation of
2) M-step: The model parameters are on a set of hackets to the victim causes a denial-of-service.

sequences so we need to maximize the lower bound of = The gata set used in the experim@msntains the alert
the joint log Ilkellho_od_across sequences by addlng up thelogs on the Intrusion Detection System (IDS) during a
per-sequence log likelihoods. We add sequence index  ppog attack. This attack can be divided into 4 phases:
the quantities in the previous section, i.g.becomes,, 1) an outside attacker probed the inside network and
¢n- becomes,,. and so on. We maximize the joint low ijentified three compromised machines; 2) the attacker
bound >, £,(-) with respect to andy = (u,0?). We broke into these compromised machines; 3) the attack

have s installed software onto these compromised machines; 4)
Bow Z Z Bsns (10) a DDoS attack was launched to an victim in the internal
s=1 {n|wp=w)} network. We also know the exact time ranges for these 4

phases. Thus, we are given a long sequence of 504 alert

with the normalization factop_,, fz.. and symbols with timestamps, which can be divided into 4 sub-

> Panztsn > Ganz(tan — pz)? sequences according to the time ranges for the 4 attack
fo=22 2= (11) phases. Then, the 4 sub-sequences, corresponding to the 4
Z;L‘ﬁ” z;f“ attack phases, are presented in the top panel of Figure 3,

where we arrange these 4 attack phases onto a time horizon
and mark the time ranges they took place as well.

In the experiments, we try to identify the 4 attack phases
as well as their time ranges via topic modeling. However, it
is impossible to launch a topic model on a single sequence,
thus, we need to reconstruct multiple sequences, each of
which only contains the alert symbols on a certain IP. Since
all the alert symbols involve with 22 inside IPs and 291
outside IPs which can be viewed as two sets of indices for
sequence segmentation, we obtain 22 sequences of inside
IP and 291 sequences of outside IP as two distinct data
sets. One, denoted Y,,,, contains the sequences on the
inside IPs, while the other, denoted B;,,;, includes the

Additionally, although it doesn’t participate in the EM
updates, the latent parametecan also be estimated after
finishing the EM procedure

N
ész X Z¢snz (12)
n=1

3) Variational Inference on T-BiLDA and T-SMMC:
For the models BIiLDA or T-BIiLDA, the vocabulary con-
tains the transitions (bigrams), we simply replace the inpu
unigram tokens for the learning procedure of LDA or T-
LDA with the bigrams. Then M-step updates of the topics,
i.e. 3’'s become

Bz w—w X Z Z Psnz (13) 2http://www.ll.mit.edu/mission/communications/istfpora/ideval/data
s=1 {n|wnp=w,w,1=w’} /2000/LLS_DDOS_10htmI
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V. Experimental Results

Fig. 2. Normalized Involvement Matrix ) ) ) )
In this section we present the topics discovered by the

T-BiLDA model and compare them with the topics with
sequences on the outside IPs. All these sequences share tf{e other 5 baseline methods in Figure 1. In the qualitative
vocabulary of 25 symbols, thus, may contafx 25 = 625 evaluat_lon on the first d_ata set we reconstruct the att_ack
transitions. scenario by topic modeling. In the quantitative evaluation

To further visualize the the relationship between the ON the second data set we demonstrate the ability of the
attack phases and the IPs we construct the foIIowingT'B'LDA model in next token prediction and clustering.
involvement matrix\/, where M (i,j7) = 1 when thej-
th IP are involved with the-th attack phase, otherwise A. Topics Discovered for DDoS
M(i,j) = 0. Each row inM corresponds to an attack
phase while each column corresponds to an IP. We then | this subsection we evaluate the ability of the dis-

normalize the entry values by columns. Thus, tieemal-  covered topics in attack scenario reconstruction. Ideally
ized involvement matrixxan be visualized by encoding some of the discovered topics should corresponds to the
the entry values into gray scales and filling them onto ppes attack phases. Additionally, we show that the global
the corresponding blocks. This way the attack scenarioransition probabilities learned from (T-)BiLDA precigel
behind the sequences if;,, is shown in Figure 2. This  carry the information of both global symbol probabilities
figure shows that 1) the first IP was the victim since it and |ocal transition probabilities. In these experimengs w
was only involved with the 4-th attach phase; 2) the next fix the number of the topicg = 6, which is bigger than
three IPs were compromised machines since they were alkhe number of the attack phases. After topic modeling we
involved with the first three phases; 3) some other IPs map each of the 4 attack phases to one of the 6 resultant
were also probed in the first phase, however, they weregpics by the following method. Clearly we can estimate
not broken into. In the experiments we will reconstruct the means of timestamps and the proportions of each

this visualization by topic modeling. The data set in this glert symbol (or transitionsy; of Phasei. Then, the topic
subsection is used for qualitative evaluation of the topic corresponds to Phasds determined by:

modeling methods.
argmin (| — pif + A - KL(3z, 5i))
B. Data of System Call Traces
whereKL(-) is the Kullback-Leibler (KL) divergence, and
The University of New Mexico provides various sets A is the tradeoff parameters between these two factors.

of system call tracés The traces contain the temporally- 1) Attack Scenario Reconstruction for DDo3ttack
ordered system calls together with the IDs of the processe§cenario reconstruction is one of the intrusion detection
that generated them. In this data set we construct thetasks. We need to specifwhere and when the events
sequences of system calls with respect to each ID. In thishappen as well as the contents of the events, vleat
case, we have no absolute timestamps on the system callghe events are.
thus, the relative position/N is used as the timestamp We first answer the question ofherevia the latent
of the n-th symbol of a sequence\( is the length of  parameter, which encodes the relationship between the
this sequence). For this purpose we manually select thesequences and the the latent topiés. > 0 means the
sequences within the length interval [5f), 200]. Finally, s-th IP is involved in thez-th latent topic. Therefore,
we obtain 747 sequences from three categories of traceswe can evaluaté via comparing it with the normalized
650 fromsynthetic UNM Ipr 49 from theCERT synthethic ~ involvement matrix shown in Figure 2. Figure 4 gives the
sendmailand 48 from thedaemonpart. The category topic distributions from all the 6 topic models considered
information can be used as the true class label to eval-in this paper for the sequences Iy, . It shows that 1)
uate the performance of clustering on the resultant topicT—BiLDA fits the real normalized involvement matrix best;
distributions of sequences. All these sequences share thé succeeds in identifying the victim, the compromised
vocabulary of 58 symbols. The data set in this subsectionmachines and the other machines; 2) The models with
temporal information outperform the models without the
3http://mww.cs.unm.edu/ immsec/systemcalls.htm temporal information; 3) T-SMMC fails to identify the
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— Time T (J T T 1 T | T T T >
10:00 TRUE time range 11:00
Reconstructed Topic-1 Topic-2
. portmap -> portmap 0.004 overflow ->root 0.003 Topic-3 Topic-6
A.ittaCk Scenario portmap -> PING 0.002 root ->portmap 0.003 root -> root 0.004 loopback-> loopback 0.005
with the ordered S -s learned by | PING  -> portmap 0.002 portmap ->overflow 0.002
T-BiLDA (only the transitions
with highest ranks are shown) I I ) I I ) I—l—l lll
— Time T T T T T T T T >
| T I
10:00 Estimated Time range 11:00

Fig. 3. True and Reconstructed Attack Scenario

roles of compromised machines; it considers some ma-
chines, which were not broken into by the attacker, as the
compromised machines.

For thewhenquestion the normal distribution over time
on each topic provides the method to estimate the time
range of each topic. Specifically, with the temporal normal
distribution V' (+|p1.., 02) of the z-th topic, we estimate the
time rangeltstt, t<nd] for this topic via

fstart — . —1.96 0., =y, +1.96 0., (14)
Here we use the fact that the 95% confidence interval for
a normal distribution is roughly 1.96 standard deviations
from the mean. For thevhat question we use the transi-
tions or symbols with significant high weights ihas the

representative contents of each topic. The bottom panel of

Figure 3 is the answer affhenandwhat from the model
of T-BiLDA based on the data set dp;,. It shows that

T-BiLDA precisely reconstruct the attack phases both on RUE

the time range and the content of each phase.

2) From Global Transition Prob. to Local Transition
Prob. and Global Activity Prob.:Given the global tran-
sition probabilities ofp(w — w’), we can get estimated
global activity probabilitiegi(w) and local transition prob-
abilities p(w’|w) using Equation (4). Next, we will show
that the global transition probabilities learned from (T-
)BILDA precisely carry the information of both global
activity probabilities and local transition probabiliie

Since we know all the alert symbols in each of the 4 at-
tack phases, the true global activity probabilities analoc

TRUE T-BiLDA BiLDA T-SMMC SMMC

T-LDA  LDA
LI
u
-
|
|

Fig. 4. Comparison between the normalized
involvement matrix and the distributions over
topics (rotated for saving space)

Phase-1

Phase-2
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Phase-4

] ) [ | | ]
Topic-1 Topic-2 Topic-3 Topic-6

T-BILDA'D, W ] ) [ | | ]
Topic-1 Topic-3 Topic-4 Topic-6

T-BILDA'D,, W ] ) [ | | ]
Topic-1 Topic-3 Topic-4 Topic-6

T-LDA'D, [ ] ) [ | | ]
Topic-1 Topic-2 Topic-4 Topic-6

T-LDA'D,, [ [ ] | | _BEEams|

Fig. 5. Estimating global activity probabilities

transition probabilities can be computed for each attack Since the non-temporal models fails to detect the topics of
phase. We compare these true values with the estimatedhe sequences as shown in Figure 4.
In Figure 5 we compare the estimated global activity
these comparisons only the 8 symbols appearing in the 4probabilities with the true values for each attack phase.
attack phases are selected to compute these values. Heré#, shows that both T-LDA and T-BiLDA precisely depict
we only show the estimations from the temporal models the global activity probabilities. Note that it is impodsib

values by the resultant topics from different methods. In
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3 Tope? Tope™s Tope™® In the experiments we randomly sample 100 sequences as

g [omm m g : the training set to learn the models with different topic

f - numbers ofk, and the remaining sequences are held out

for testing. In testing, we first infer the distribution over

Fig. 6. Estimating local transition probabili- topics of each sequence in the test set using the learned
ties models. Then, for each sequence we randomly sample one

tokenw,, and predict its next tokemw,, ;. It seems that the
settings of this prediction are not realistic since the ¢opi
distribution of the whole sequence is required in advéance
However, these experiments are still reasonable to check
the descriptive ability of the topic models. Moreover, sinc
the prediction is made on a held out testing set, we actually
evaluate the generalization performance of the models by
this experiment.

Two measures are used for the evaluatiancuracy

to estimate global symbol probabilities from the model of
(T-)SMMC.

In Figure 6 we compare the estimated local transition
matrices with the true values for each attack phase. It is
clear that the estimation by T-BiLDA outperforms that by
T-SMMC. This conclusion coincides with the fact that T-

SMMC fails to detect the topics of some sequences as o : N
shown in Figure 4. Note also that it is impossible to andpredictive perplexityThe accuracy value is simply the

estimate local transition probabilities from the model of ratio.b(?tween the number of righ_t predictions.anq the _total
(T-)LDA prediction number, and the predictive perplexity is defined

These results further prove our analysis in Section Il as
that the global transition probabilities considered by (T-
)BILDA covers the information of both global activity eXp{_M P(Wm,n+1)} (16)
probabilities and local transition probabilities. m=1

M

wherep(w,, »+1) is the probability of the true next symbol
B. Experiments on System Call Traces given all the other information and/ is the number
of testing documents. The smaller predictive perplexity
score indicates the better generalization performance. We
sample the training sets and the symbols on each test
sequence for both 10 times to calculate the average values
of the two measures. Figure 7 shows the prediction
performance under different topic numbers. It is clear that
1) T-BiLDA consistently performs the best under different
settings of topic number; 2) the temporal information
always improves the prediction performance.

The experiments on system call traces quantitatively
evaluate the performance of the topic models. Specifically,
we show their micro descriptive ability by next token
prediction and their macro descriptive ability by sequence
clustering.

1) Next Activity Prediction:We demonstrate the de-
scriptive abilities of the proposed models via making the
next activity predictions on the data set of system call
traces. The probabilities of observing symhag); given
the very previous symbohs based on the 6 tOpiC models 4For the real-world problem of next activity prediction wencifer

I the topic distribution and the sequence lendthbased on the given

of LD_A' T-LDA, SMMC, T'SM.MC’ BILDA, and T-BiLDA incomplete sequence, and then make the prediction usingsithitar
are given as follows respectively: method.



0 Predicton as Predetion tial Generative Topographic Mapping (SGTM) models [8]
P e~ —* 2z replace the Dirichlet prior in SMMC with a much more
G et § complex prior. The prior in SGTM offers more flexibility
R %>, than the Dirichlet prior so that SGTM is robust against the
goi e E data size. HMMLDA [5] is a generative composite model
Dzs;w:_a\/ £ that applies hidden Markov model to characterize syntax
5 O S - information and use LDA to model semantic information.
Topical N-grams [16] discovers topics as well as phrases,

o
-

Number of Topics Number of Topics i.e. the local dependency between words. All of the above
models have no capability of modeling temporal informa-
Fig. 7. Results of prediction tion.
= oo S There are another sort of models derived from LDA
0ol | o= e :)/_/./'\. with the consideration of temporal information such as
P BT . Dynamic Topic Models (DTM) [1], Continuous Time
r’/\' °“r,::<:?'5:3"___y"‘4 Dynamic Topic Models (cDTM) [14], Multiscale Topic
RS s Ty 1 Tomography Model (MTTM) [9] and Topic over Time

(TOT) [15]. DTM and cDTM both model the evolution of
topics over time while TOT uses the temporal information
to refine the topics. MTTM accomplishes both the two
objectives, however, it cannot be used to generate the
sequential activities considered in this paper.

8 10 12
Number of Topics

6 8 0
Number of Topics

Fig. 8. Results of clustering VIl. Conclusions

C. Clustering for System Call Traces In this paper we proposed a probabilistic mixture model,
called T-BiLDA, for modeling sequences of temporal ac-

Next we evaluate the topic models on their descriptive fivities. Compared to the previous work, T-BiLDA jointly
abilities in a macro way. Specifically, we use the distri- exploits both the Markov dependence between the immedi-
bution over topics of a sequence as the feature vectord® activities and the temporal information on each agtivit
for clustering. Here, K-means is adopted to clustering in @ sequence. To modeling the Markov dependence we
the sequences. The three classes of sequences known ifOPOse the concept of global transition probability, and
advance is used as the ground truth of the clustering. TwoShow that this concept covers the information of both
evaluation measured\djusted Rand IndegARI) [6] and global activity probabilities and local transition proliab
Normalized Mutual Informatio@NMI) [12], are calculated ~ 1ti€S. The experiments on the data of DDoS attack and
for evaluation. Larger ARI and NMI scores mean better SySt€m call traces show the effectiveness of this model
clustering performance. As the same with the prediction qualitatively and quantitatively. In the near future we
task we also randomly sample 100 sequences as the train%ill apply this model into more other applications with
ing set to learn the models, and the remaining sequence§emp0ra| patterns, such as routine detection on the human
are held out for testing. daily activities [7] and sustainability characterizatimiithe

The average scores over 25-round running of K-meanst€Mmperature curves on the ensemble of chiller units in a
are shown in Figure 8. It shows that 1) T-BiLDA still data center [10].
outperforms the other models; 2) T-LDA outperforms T-

SMMC since the global activity probabilities are more References
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Appendix
E-step: Expand the right side of Equation (7) we have:

k k
L(v, ¢, 8,9) = 10gF(Z1 ;) — Zl logI'(a2)
Jj= z=

3 (s - D) — (3 4]
z]:vl . Z]g:1 N .
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n % i b LogIN (112, 02)]
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