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Abstract

Temporally-ordered activity sequences are popular in
many real-world domains. This paper presents an LDA-
style topic model for sequences of temporal activities that
captures three features of such sequences: 1) the counts of
unique activities, 2) the Markov transition dependence and
3) the absolute or relative timestamp on each activity. In
modeling the first two features we propose the concept of
global transition probabilityand distinguish it withlocal
transition probabilityused in previous work. In modeling
the third feature, we employ a continuous time distribution
to depict the time range of latent topics. The combination
of the global transition probability and the temporal infor-
mation helps to refine the mixture distribution over topics
for temporal sequence analysis. We present results on the
data of distributed denial-of-service attack and system call
traces, qualitatively and quantitatively showing improved
topics, better next activity prediction and sequence clus-
tering.

I. Introduction

Temporally-ordered activity sequences are popular in
many real-world domains. For example, web access traces
of users are recorded as logs in the servers; multi-step
network intrusions may trigger off alert sequences by the
Intrusion Detection Systems. These activity sequences are
represented as a sequence of symbols. Additionally, the
numerical data streams, such as the data from human
behavior sensors [7] and the temperature data from the
chillers in the data center [10], can also be converted into
the symbolic representations. Profiling such data may help
to identify interesting latent patterns or malicious behaviors
among them.

Such temporal data can be formulated as follows. A
temporal activityis a pair〈w, t〉 wherew ∈ V is an activity

symbol whilet is the timestamp ofw, andV is the finite set
of all activity symbols. Asequence of temporal activitiesis
then an ordered set of activities occurred within some time
range, denoted bys = (〈w1, t1〉, · · · , 〈wN , tN 〉), where
wn ∈ V , andtn ≤ tn+1 for n = 1, · · · , N − 1. Due to the
wide applications of temporal activity sequences we focus
on the topic modeling method for such kind of data in this
study. Specifically, given a set of sequences of temporal
activities, we aim to find the latent topics within these
sequences by probabilistic topic models [3], [11]. Such
models try to assign a latent topic to each activity and then
achieve more compact representation of the sequences.

The latent topics within a sequence of temporal activity
sequence may be expressed in the following three features:
1) the counts of unique symbols (global information), 2)
the Markov transition dependence (local information) and
3) the time-stamps attached to the symbols (temporal in-
formation). To capture the characteristics in these features
several probabilistic topic models have been applied or
proposed for profiling activity sequences. First, Huynh
et al. [7] successfully employ Latent Dirichlet Allocation
(LDA) [3] to discovery patterns in the sequences of daily
human activities, in which LDA only models the counts
of unique words (Feature 1) in a sequence and ignores
the activity order. Next, to model the Markov dependence
(Feature 2) directly Simplicial Mixture of Markov Chain
(SMMC) [4] and the Topic Model proposed in [13],
expressed by the conditional probability of a symbol given
its very previous state, are proposed and applied into the
applications in web page browsing, word processor and
telephone usage data to show their ability of sequential ac-
tivity profiling especially on predicting incoming activities.
Finally, Wang and McCallum proposed Topic Over Time
(TOT) [15] to capture the temporal information (Feature
3) by associating a continuous time distribution with each
topic.

Since none of the above models can capture all these
three features in temporal activity sequences, in this paper
we aim at a uniform topic model which might capture more
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meaningful latent semantics in the data by considering all
these three features. To this end, we first propose a new
concept ofglobal transition probabilitybased on transi-
tions of symbols (bigrams), and claim that it covers the
information from the first two features. Then, we inject the
temporal information on each activity into the generating
process of the sequences. This way the proposed model of
T-BiLDA is influenced by all the three features of temporal
activity sequences. Finally, we present experimental results
with two real-world data sets. On the data ofDistributed
Denial-of-Service(DDoS) attack, we show that T-BiLDA
exactly re-constructs the attack scenario, in which each
attack phase exactly corresponds to one of the latent topics,
and the roles of each computers, such as victim, compro-
mised computers and so on, are also exactly identified.
On the data ofsystem call traces, we show its micro
descriptive ability via next token prediction and its macro
descriptive ability via sequence clustering. The qualitative
results on the first data set and the quantitative results
on the second one both show that T-BiLDA significantly
outperforms the other five baseline methods considered in
modeling sequences of temporal activities.

II. Topics over Transitions

In this section, we first give the formalized definitions of
global activity probabilitytogether withlocal and global
transition probabilityand propose the model of BiLDA for
modeling the transitions in the sequences. Then we discuss
the properties of these probabilities.

Definition 1 (Global Activity Probability):The global
activity probability of the activity with symbolw ∈ V
is defined as

p(w) =
♯(w)

∑

w∗ ♯(w∗)
.

Definition 2 (Local Transition Probability):The local
transition probability fromw to w′is defined as

p(w′|w) =
♯(w → w′)

∑

w∗ ♯(w → w∗)
.

Definition 3 (Global Transition Probability):The
global transition probability fromw to w′ is defined as

p(w → w
′

) =
♯(w → w

′

)
∑

w∗,w∗′ ♯(w∗ → w∗′)
.

In the above three definitions♯(·) is the counting number
of the corresponding symbol or transition occurring. This
counting can be conducted within different context. For
example, if the counting is in a sequences, we obtain these
probabilities specific to the sequence, denoted asp(·|s)
where the ’·’ could bew, w′|w or w → w′. Analogously,
we can also computep(·|z) for each topicz when all
symbols or transitions are already assigned to the topics.

TABLE I. Notations used in this paper
Symbol Description

V the vocabulary of symbols, with sizel
k number of topics
Ns number of symbols in the sequences
w a symbol in vocabulary
w → w′ a symbol transition wherew,w′ ∈ V

wsn then-th observed symbol in sequences
tsn the timestamp of bothwsn andwsn → ws,n+1

zsn the topic of bothwsn andwsn → ws,n+1

θs the multinomial distribution over topics
βzw the multinomial distribution overw for topic z
βz,w′|w the transition distribution fromw for topic z
βz,w→w′ the multinomial distribution overw → w′ for topic z
ψz the temporal distribution of time for topicz

The topic modeling is essentially to build a probabilistic
mixture model of overp(·|s) via learning the mixture
componentp(·|z) as well as estimating mixture proportion
p(z|s). Various contents in the brackets ofp(·) lead to
various probabilistic topic models, which are introduced
in details as follows.

LDA [3] is a Bayesian network that generates docu-
ments using a mixture of topics. LDA ignores the order
of the words in a sequence. In its generative process, for
each documents, a multinomial distributionθsz = p(z|s)
over topics is randomly sampled from a Dirichlet with
parameterα, and then to generate each word, a topic
z is chosen from this distribution, and a word,w, is
generated by randomly sampling from a topic-specific
multinomial distributionβzw. This model is aimed to learn
the distribution over topicθs for each sequences andβzw

for each topicz. The marginal distribution of documents
in LDA can be represented as:

p({wn}
N
n=1|α, β, s) =

∫
p(θ|α)

N∏

n=1

k∑

z=1

p(z|θ, s)
︸ ︷︷ ︸

p(z|s)

p(wn|β, z)
︸ ︷︷ ︸

p(w|z)

dθ (1)

where the mixture componentp(w|z) for each topic and
the mixture proportionp(z|s) for each document are de-
termined based on the observed global activity probability
p(w|s).

SMMC [4] is proposed to generate the sequence with
m-th order Markov dependence. The generative process
of the sequences by this model with first-order Markov
dependence can be described as follows:

1) set multinomial distributionβz,w′|w for each topicz
and eachw ∈ V ;

2) for each sequences, draw a multinomial distribution
θsz from a Dirichlet priorα; then for then-th word
wsn in the sequences:

a) drawzsn from θsz ; and
b) drawwsn from βzsn,w′|ws,n−1

.

The model of SMMC is aimed to estimate the distri-
bution over topicsθsz = p(z|s) for each sequences



3(a) Number of transitions
♯(a → a) ♯(a → b) ♯(a → c) ♯(b → a) ♯(b → b) ♯(b → c) ♯(c → a) ♯(c → b) ♯(c → c)

s1 92 1 1 1 1 1 1 1 1
s2 992 1 1 1 1 1 1 1 1

(b) The local transition probability
p(a|a) p(b|a) p(c|a) p(a|b) p(b|b) p(c|b) p(a|c) p(b|c) p(c|c)

s1
92
94

1
94

1
94

1
3

1
3

1
3

1
3

1
3

1
3

s2
992
994

1
994

1
994

1
3

1
3

1
3

1
3

1
3

1
3

(c) The global transition probability
p(a → a) p(a → b) p(a → c) p(b → a) p(b → b) p(b → c) p(c → a) p(c → b) p(c → c)

s1 0.92 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
s2 0.992 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

TABLE II. The statistical numbers in the two example sequences

and βz,w′|w = p(w′|w, z) for each topicz and each
wordw. Analogously, the marginal distribution of Markov
transitions in a sequences in SMMC is:

p({wn+1|wn}
N−1
n=1

, α, β, s) =

∫
p(θ|α)

N−1∏

n=1

k∑

z=1

p(z|θ, s)
︸ ︷︷ ︸

p(z|s)

p(wn+1|wn, β, z)

︸ ︷︷ ︸

p(w′|w,z)

dθ

(2)

where the mixture componentp(w′|w, z) and the mixture
proportionp(z|s) are determined based on the observed
local transition probabilityp(w′|w, s).

For the analysis of sequences with Markov dependence,
exploiting the local transition probabilityp(w′|w, s) by
SMMC might be better than considering thep(w|s) by
LDA. However, considering onlyp(w′|w, s) is not enough
for this task. See the following two sequences with vocab-
ulary V = {a, b, c}:

s1 = a, · · · , a
︸ ︷︷ ︸

93

, c, c, c, c, b, a, c, a;

s2 = a, · · · , a
︸ ︷︷ ︸

993

, b, b, c, c, b, a, c, a.

As shown by Table 2(b) the local transition probabilities
of the two sequences are the same except on the first three
entries. Therefore, the distributions over topics of these
two sequences will be very similar if we only consider
the local transition probability. However, the number of
transitions occurring in the sequence might be the key
factor to express the semantic. For example, in the above
sequences the transitiona → a may represent some
important features. For example, they may be the two
successive alarms of network attack. Under this situation
the model of SMMC, considering only the local transition
probability, might fail to find thats2 is more likely to be
a sequence of network attack thans1.

In the following we propose the model of BiLDA
(Binary LDA), which considers the global transition prob-
ability to generate the sequence. The key idea of BiLDA is
to consider any transition of two immediate tokensw,w′

in a sequences, denoted byw → w′ ∈ V×V , as a word in
the bag-of-words model. Then the same generative process
as LDA are carried out to produce thisbag-of-transitions.

The model of BiLDA is aimed to estimate the distri-
bution over topicsθsz for each sequences and βz,w→w′

for each topicz. Every entry inβz,w→w′ is actually the
probability that the corresponding transitionw → w′ is
generated given the topicz, that is βz,w→w′ = p(w →
w′|z).

p({wn → wn+1}
N−1
n=1

|α, β, s) =

∫
p(θ|α)

N−1∏

n=1

k∑

z=1

p(z|θ, s)
︸ ︷︷ ︸

p(z|s)

p(wn → wn+1|β, z)

︸ ︷︷ ︸

p(w→w′|z)

dθ

(3)

where the mixture componentp(w → w′|z) and the
mixture proportionp(z|s) are determined based on the
observed global transition probabilityp(w → w′|s).

A. Discussion

It is clear that global activity probabilityp(w) is equal
to the normalizedbag-of-wordsrepresentation in text min-
ing, local transition probabilityp(w′|w) corresponds to the
transition matrix in Markov chains, and global transition
probability p(w → w′) is essentially the normalizedbag-
of-transitions representation. Furthermore, fromp(w →
w′) we can estimatep(w′|w) andp(w) directly, namely

p(w′|w) =
p(w → w′)

∑

w∗ p(w → w∗)
, p(w) ≈

∑

w∗

p(w → w
∗). (4)

The approximation of the right equation in (4) is due to the
fact that the counts of♯(w) and♯(w → w′) are not exactly
equal when the ending symbol of a sequence isw. Obvi-
ously, this proximation is reasonable when the sequence is
long enough. Illustrated by Equation (4) we find that the
global transition probabilityp(w → w′|s) considers the
factors of both the local transition probabilityp(w′|w, s)
and the global activity probabilityp(w|s). As shown in
Table 2(c), the global transition probabilities of the two
sequences are quite different, thus, it is more possible to
distinguish the two sequences. Therefore, in this paper we
suggest using the global transition probability in temporal
activity profiling.
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III. Topics over Temporal Activities

Each activity in a temporal sequence is always attached
with a timestamp. This temporal information might be
another important factor to refine the topics. In this section
we propose the model of T-BiLDA, which injects the
temporal information into BiLDA.

A. Model Description

In T-BiLDA, topic discovery is influenced not only
by the co-occurrences of transitions, but also temporal
information. We adopt the method in T-LDA1 [15] to inject
the temporal information into the generative process. This
method associates with each topic a continuous distribution
over time. We adopt normal distributionN (·|µz , σ

2
z) to

express this time distribution in this study. The mean
parameterµz locates the topicz over the time horizon
while the standard deviationσz facilitates the time range
estimation. In each round of transition generation the
current topic generates not only a transition according to
the global transition probabilities under this topic, but also
the timestamp associated to the transition according to the
time distribution on the topic. Specifically, the generative
process of the T-BiLDA model can be described as follows:

1) draw multinomial distributionβz,w→w′ = p(w →
w′|z) over transitions for each topicz; draw Normal
distributionψz for each topicz;

2) for each sequences, draw a multinomial distribution
θs from a Dirichlet priorα; then for the transition
wsn → ws,n+1 in the sequences:

a) drawzsn from θsz ;
b) drawwsn → ws,n+1 from βzsn

;
c) draw a timestamptsn from ψzsn

.

Although T-BiLDA adopts the similar method with T-
LDA model [15] to inject the temporal information into
the model, the characteristics of the data used in these two
models are different. Each document used in the T-LDA
model [15] is associated with only one timestamp, while
the symbols in a sequence are associated with different
timestamps. Additionally, the time ranges of the temporal
sequences greatly overlap while the timestamps of the
documents used in [15] overlap less. Thus, the temporal
information in the temporal sequences can be fully utilized
to refine the topics.

With the similar method it is easy to extend the model
of SMMC into T-SMMC, which considers both local
transition probabilities and temporal information. Figure 1
gives a summary of the topic models with the features they

1The same with the model of TOT [15]. In Sections III and V we
rename this model in order to indicate that this model is actually the
LDA model plus the temporal information.

LDA

SMMC

T-SMMC

T-LDA

BiLDA

T-BiLDA

+
 t
im

e
G

A
P
 

L
T

P GAP + LTP 
GTP

GAP + time

G
T
P

+
tim

e

LTP GTP

Abbreviations:

GAP: Global Activity Probability

LTP:  Local Transition Probability

GTP: Global Transition Probability

Fig. 1. Summary of Topic Models of this pa-
per.

exploit respectively. These six methods will be compared
for temporal activity modeling in the experimental section.

B. Model Learning by Variational Infer-
ence

We now estimateα, β andψ = (µ, σ2) as parameters
and as well as the literatures [2], [11], [15] we simply fix
α to ~1. There are some approximate inference techniques
available in the literature: variational methods, expectation
propagation and Gibbs sampling. We choose a variational
Expectation Maximization (EM) procedure, which is the
approach taken in [3], [14], [1], [2], [4]. We firstly consider
T-LDA and introduce the learning of T-SMMC and T-
BiLDA later.

1) Variational E-step: Given a sequence of temporal
activity, the likelihood of the this observed sequence is

L(α, β, ψ) =

∫

p(θ|α)

N∏

n=1

(

k∑

z=1

p(z|θ)p(wn|z, β)p(tn|z, ψ)) dθ

(5)
The the parameters are estimated by maximizing
L(α, β, ψ), which is intractable as with other LDA type
models. Therefore, we carry out variational EM. Suppose
we have the variational distribution:

q(θ, ~z|γ, φ) = q(θ|γ)

N∏

n=1

q(zn|φn) (6)

whereγ is a Dirichlet parameter vector with dimensionk
and eachφn parametrizes a multinormial distribution on
the latent topics satisfyingE[Zn] = φn.

Variational objective function. We need to maximize
the lower boundL(·) of the log likelihood for a single
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sequence:

log L(α, β, ψ) ≥ L(γ, φ;α, β, ψ) =

Eq [log p(θ|α)] +
N∑

n=1

Eq[log p(zn|θ)] +
N∑

n=1

Eq [log p(wn|zn, β)]

+
N∑

n=1

Eq[log p(tn|zn, ψ)] + H(q)

(7)
Note that the first tree terms and the entropy of the

variational distributionH(q) are the same as the original
LDA. Expand and maximize the lower bound of log
likelihood L(·) with respect toφnz andγz. We have

φ̂nz ∝ βz,wn · N (tn|µz, σ
2
z) · exp[Ψ(γz) − Ψ(

k∑

z=1

γz)] (8)

γ̂z = αz +

N∑

n=1

φnz (9)

where n = 1, 2, ..., N , Ψ is digamma function and
N (·|µz , σ

2
z) is the normal probability density function with

parameterψz = (µz , σ
2
z). Detailed derivations are given in

the Appendix for completeness.
2) M-step: The model parameters are on a set of

sequences so we need to maximize the lower bound of
the joint log likelihood across sequences by adding up the
per-sequence log likelihoods. We add sequence indexs to
the quantities in the previous section, i.e.tn becomestsn,
φnz becomesφsnz and so on. We maximize the joint low
bound

∑

s Ls(·) with respect toβ andψ = (µ, σ2). We
have

β̂zw ∝

S∑

s=1

∑

{n|wn=w}

φsnz (10)

with the normalization factor
∑

w β̂zw, and

µ̂z =

∑

s,n

φdnztsn

∑

s,n

φsnz

, σ̂
2
z =

∑

s,n

φsnz(tsn − µz)
2

∑

s,n

φsnz

(11)

Additionally, although it doesn’t participate in the EM
updates, the latent parameterθ can also be estimated after
finishing the EM procedure

θ̂sz ∝

N∑

n=1

φsnz (12)

3) Variational Inference on T-BiLDA and T-SMMC:
For the models BiLDA or T-BiLDA, the vocabulary con-
tains the transitions (bigrams), we simply replace the input
unigram tokens for the learning procedure of LDA or T-
LDA with the bigrams. Then M-step updates of the topics,
i.e. β’s become

β̂z,w→w′ ∝

S∑

s=1

∑

{n|wn=w,wn+1=w′}

φsnz (13)

with the normalization factor
∑

w,w′ β̂z,w→w′ . To learn
SMMC and T-SMMC we need an appropriate normal-
ization factor to make the topics to Markov chains:
∑

w β̂z,w→w′ . The forms of updating the other parameters
for these models remain as the same.

IV. Data Sets

We present experiments on two real-world data sets:
the data of DDoS attack and system call traces. These two
data sets are use to conduct qualitative and quantitative
evaluation respectively.

A. Data of DDoS Attack

Usually, an attacker carries out a DDoS attack by ex-
ploiting a group of machines in a network and identifies the
vulnerable ones among them as the DDoScompromised
machines. The intruder then loads cracking tools onto these
compromised machines. Finally, with a single command
the intruder instructs all the controlled machines to launch
flood attacks against a DDoSvictim. The inundation of
packets to the victim causes a denial-of-service.

The data set used in the experiments2 contains the alert
logs on the Intrusion Detection System (IDS) during a
DDoS attack. This attack can be divided into 4 phases:
1) an outside attacker probed the inside network and
identified three compromised machines; 2) the attacker
broke into these compromised machines; 3) the attack
installed software onto these compromised machines; 4)
a DDoS attack was launched to an victim in the internal
network. We also know the exact time ranges for these 4
phases. Thus, we are given a long sequence of 504 alert
symbols with timestamps, which can be divided into 4 sub-
sequences according to the time ranges for the 4 attack
phases. Then, the 4 sub-sequences, corresponding to the 4
attack phases, are presented in the top panel of Figure 3,
where we arrange these 4 attack phases onto a time horizon
and mark the time ranges they took place as well.

In the experiments, we try to identify the 4 attack phases
as well as their time ranges via topic modeling. However, it
is impossible to launch a topic model on a single sequence,
thus, we need to reconstruct multiple sequences, each of
which only contains the alert symbols on a certain IP. Since
all the alert symbols involve with 22 inside IPs and 291
outside IPs which can be viewed as two sets of indices for
sequence segmentation, we obtain 22 sequences of inside
IP and 291 sequences of outside IP as two distinct data
sets. One, denoted byDin, contains the sequences on the
inside IPs, while the other, denoted byDout, includes the

2http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data
/2000/LLS DDOS 1.0.html
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Phase 1

Phase 2

Phase 3

Phase 4

Vict. Compromised Other inside IPs

Fig. 2. Normalized Involvement Matrix

sequences on the outside IPs. All these sequences share the
vocabulary of 25 symbols, thus, may contain25×25 = 625
transitions.

To further visualize the the relationship between the
attack phases and the IPs we construct the following
involvement matrixM , whereM(i, j) = 1 when thej-
th IP are involved with thei-th attack phase, otherwise
M(i, j) = 0. Each row inM corresponds to an attack
phase while each column corresponds to an IP. We then
normalize the entry values by columns. Thus, thenormal-
ized involvement matrixcan be visualized by encoding
the entry values into gray scales and filling them onto
the corresponding blocks. This way the attack scenario
behind the sequences inDin is shown in Figure 2. This
figure shows that 1) the first IP was the victim since it
was only involved with the 4-th attach phase; 2) the next
three IPs were compromised machines since they were all
involved with the first three phases; 3) some other IPs
were also probed in the first phase, however, they were
not broken into. In the experiments we will reconstruct
this visualization by topic modeling. The data set in this
subsection is used for qualitative evaluation of the topic
modeling methods.

B. Data of System Call Traces

The University of New Mexico provides various sets
of system call traces3. The traces contain the temporally-
ordered system calls together with the IDs of the processes
that generated them. In this data set we construct the
sequences of system calls with respect to each ID. In this
case, we have no absolute timestamps on the system calls,
thus, the relative positionn/N is used as the timestamp
of the n-th symbol of a sequence (N is the length of
this sequence). For this purpose we manually select the
sequences within the length interval of[50, 200]. Finally,
we obtain 747 sequences from three categories of traces:
650 fromsynthetic UNM lpr, 49 from theCERT synthethic
sendmail and 48 from thedaemonpart. The category
information can be used as the true class label to eval-
uate the performance of clustering on the resultant topic
distributions of sequences. All these sequences share the
vocabulary of 58 symbols. The data set in this subsection

3http://www.cs.unm.edu/ immsec/systemcalls.htm

is used for quantitative evaluation of the topic modeling
methods.

V. Experimental Results

In this section we present the topics discovered by the
T-BiLDA model and compare them with the topics with
the other 5 baseline methods in Figure 1. In the qualitative
evaluation on the first data set we reconstruct the attack
scenario by topic modeling. In the quantitative evaluation
on the second data set we demonstrate the ability of the
T-BiLDA model in next token prediction and clustering.

A. Topics Discovered for DDoS

In this subsection we evaluate the ability of the dis-
covered topics in attack scenario reconstruction. Ideally,
some of the discovered topics should corresponds to the
DDoS attack phases. Additionally, we show that the global
transition probabilities learned from (T-)BiLDA precisely
carry the information of both global symbol probabilities
and local transition probabilities. In these experiments we
fix the number of the topicsT = 6, which is bigger than
the number of the attack phases. After topic modeling we
map each of the 4 attack phases to one of the 6 resultant
topics by the following method. Clearly we can estimate
the means of timestampsµi and the proportions of each
alert symbol (or transitions)βi of Phasei. Then, the topic
corresponds to Phasei is determined by:

arg min
z

(|µz − µi| + λ · KL(βz , βi))

whereKL(·) is the Kullback-Leibler (KL) divergence, and
λ is the tradeoff parameters between these two factors.

1) Attack Scenario Reconstruction for DDoS:Attack
scenario reconstruction is one of the intrusion detection
tasks. We need to specifywhere and when the events
happen as well as the contents of the events, i.e.what
the events are.

We first answer the question ofwhere via the latent
parameterθ, which encodes the relationship between the
sequences and the the latent topics.θsz > 0 means the
s-th IP is involved in thez-th latent topic. Therefore,
we can evaluateθ via comparing it with the normalized
involvement matrix shown in Figure 2. Figure 4 gives the
topic distributions from all the 6 topic models considered
in this paper for the sequences inDin. It shows that 1)
T-BiLDA fits the real normalized involvement matrix best;
it succeeds in identifying the victim, the compromised
machines and the other machines; 2) The models with
temporal information outperform the models without the
temporal information; 3) T-SMMC fails to identify the
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Fig. 3. True and Reconstructed Attack Scenario

roles of compromised machines; it considers some ma-
chines, which were not broken into by the attacker, as the
compromised machines.

For thewhenquestion the normal distribution over time
on each topic provides the method to estimate the time
range of each topic. Specifically, with the temporal normal
distributionN (·|µz , σ

2
z) of the z-th topic, we estimate the

time range[tstartz , tend
z ] for this topic via

t̂startz = µz − 1.96 σz, t̂end
z = µz + 1.96 σz, (14)

Here we use the fact that the 95% confidence interval for
a normal distribution is roughly 1.96 standard deviations
from the mean. For thewhat question we use the transi-
tions or symbols with significant high weights inβ as the
representative contents of each topic. The bottom panel of
Figure 3 is the answer ofwhenandwhat from the model
of T-BiLDA based on the data set ofDin. It shows that
T-BiLDA precisely reconstruct the attack phases both on
the time range and the content of each phase.

2) From Global Transition Prob. to Local Transition
Prob. and Global Activity Prob.:Given the global tran-
sition probabilities ofp(w → w′), we can get estimated
global activity probabilitieŝp(w) and local transition prob-
abilities p̂(w′|w) using Equation (4). Next, we will show
that the global transition probabilities learned from (T-
)BiLDA precisely carry the information of both global
activity probabilities and local transition probabilities.

Since we know all the alert symbols in each of the 4 at-
tack phases, the true global activity probabilities and local
transition probabilities can be computed for each attack
phase. We compare these true values with the estimated
values by the resultant topics from different methods. In
these comparisons only the 8 symbols appearing in the 4
attack phases are selected to compute these values. Here,
we only show the estimations from the temporal models

TRUE LDAT−LDASMMCT−SMMCBiLDAT−BiLDA

Fig. 4. Comparison between the normalized
involvement matrix and the distributions over
topics (rotated for saving space)

TRUE
Phase−1

Topic−1
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Fig. 5. Estimating global activity probabilities

since the non-temporal models fails to detect the topics of
the sequences as shown in Figure 4.

In Figure 5 we compare the estimated global activity
probabilities with the true values for each attack phase.
It shows that both T-LDA and T-BiLDA precisely depict
the global activity probabilities. Note that it is impossible
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to estimate global symbol probabilities from the model of
(T-)SMMC.

In Figure 6 we compare the estimated local transition
matrices with the true values for each attack phase. It is
clear that the estimation by T-BiLDA outperforms that by
T-SMMC. This conclusion coincides with the fact that T-
SMMC fails to detect the topics of some sequences as
shown in Figure 4. Note also that it is impossible to
estimate local transition probabilities from the model of
(T-)LDA.

These results further prove our analysis in Section II
that the global transition probabilities considered by (T-
)BiLDA covers the information of both global activity
probabilities and local transition probabilities.

B. Experiments on System Call Traces

The experiments on system call traces quantitatively
evaluate the performance of the topic models. Specifically,
we show their micro descriptive ability by next token
prediction and their macro descriptive ability by sequence
clustering.

1) Next Activity Prediction:We demonstrate the de-
scriptive abilities of the proposed models via making the
next activity predictions on the data set of system call
traces. The probabilities of observing symbolwn+1 given
the very previous symbolswn based on the 6 topic models
of LDA, T-LDA, SMMC, T-SMMC, BiLDA, and T-BiLDA
are given as follows respectively:

P (wn+1 = w|θ, β) ∝
k∑

z=1

θz · βzw,

P (wn+1 = w|tn; θ, β, ψ) ∝
k∑

z=1

θz · βzw · N (tn|ψz),

p(wn+1 = w|wn; θ, β) ∝
k∑

z=1

[θz · βz,w|wn
],

p(wn+1 = w|wn, tn; θ, β, ψ) ∝
k∑

z=1

[θz · βz,w|wn
· N (tn|ψz)],

p(wn+1 = w|wn; θ, β) ∝
k∑

z=1

[θz · βz,wn→w],

p(wn+1 = w|wn, tn; θ, β, ψ) ∝
k∑

z=1

[θz · βz,wn→w · N (tn|ψz)].

(15)
In the experiments we randomly sample 100 sequences as
the training set to learn the models with different topic
numbers ofk, and the remaining sequences are held out
for testing. In testing, we first infer the distribution over
topics of each sequence in the test set using the learned
models. Then, for each sequence we randomly sample one
tokenwn and predict its next tokenwn+1. It seems that the
settings of this prediction are not realistic since the topic
distribution of the whole sequence is required in advance4.
However, these experiments are still reasonable to check
the descriptive ability of the topic models. Moreover, since
the prediction is made on a held out testing set, we actually
evaluate the generalization performance of the models by
this experiment.

Two measures are used for the evaluation,accuracy
andpredictive perplexity. The accuracy value is simply the
ratio between the number of right predictions and the total
prediction number, and the predictive perplexity is defined
as

exp{−
1

M

M∑

m=1

p(wm,n+1)} (16)

wherep(wm,n+1) is the probability of the true next symbol
given all the other information andM is the number
of testing documents. The smaller predictive perplexity
score indicates the better generalization performance. We
sample the training sets and the symbols on each test
sequence for both 10 times to calculate the average values
of the two measures. Figure 7 shows the prediction
performance under different topic numbers. It is clear that
1) T-BiLDA consistently performs the best under different
settings of topic number; 2) the temporal information
always improves the prediction performance.

4For the real-world problem of next activity prediction we can infer
the topic distribution and the sequence lengthN based on the given
incomplete sequence, and then make the prediction using thesimilar
method.
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C. Clustering for System Call Traces

Next we evaluate the topic models on their descriptive
abilities in a macro way. Specifically, we use the distri-
bution over topics of a sequence as the feature vector
for clustering. Here, K-means is adopted to clustering
the sequences. The three classes of sequences known in
advance is used as the ground truth of the clustering. Two
evaluation measures,Adjusted Rand Index(ARI) [6] and
Normalized Mutual Information(NMI) [12], are calculated
for evaluation. Larger ARI and NMI scores mean better
clustering performance. As the same with the prediction
task we also randomly sample 100 sequences as the train-
ing set to learn the models, and the remaining sequences
are held out for testing.

The average scores over 25-round running of K-means
are shown in Figure 8. It shows that 1) T-BiLDA still
outperforms the other models; 2) T-LDA outperforms T-
SMMC since the global activity probabilities are more
important than the local transition probabilities in the
clustering task.

VI. Related Work

Discovering sequential patterns via topic models has
been extensively studied in the literatures. Simplicial Mix-
ture of Markov Chain (SMMC) [4], as introduced in
Section II, is a representative one of topic models. Sequen-

tial Generative Topographic Mapping (SGTM) models [8]
replace the Dirichlet prior in SMMC with a much more
complex prior. The prior in SGTM offers more flexibility
than the Dirichlet prior so that SGTM is robust against the
data size. HMMLDA [5] is a generative composite model
that applies hidden Markov model to characterize syntax
information and use LDA to model semantic information.
Topical N-grams [16] discovers topics as well as phrases,
i.e. the local dependency between words. All of the above
models have no capability of modeling temporal informa-
tion.

There are another sort of models derived from LDA
with the consideration of temporal information such as
Dynamic Topic Models (DTM) [1], Continuous Time
Dynamic Topic Models (cDTM) [14], Multiscale Topic
Tomography Model (MTTM) [9] and Topic over Time
(TOT) [15]. DTM and cDTM both model the evolution of
topics over time while TOT uses the temporal information
to refine the topics. MTTM accomplishes both the two
objectives, however, it cannot be used to generate the
sequential activities considered in this paper.

VII. Conclusions

In this paper we proposed a probabilistic mixture model,
called T-BiLDA, for modeling sequences of temporal ac-
tivities. Compared to the previous work, T-BiLDA jointly
exploits both the Markov dependence between the immedi-
ate activities and the temporal information on each activity
in a sequence. To modeling the Markov dependence we
propose the concept of global transition probability, and
show that this concept covers the information of both
global activity probabilities and local transition probabil-
ities. The experiments on the data of DDoS attack and
system call traces show the effectiveness of this model
qualitatively and quantitatively. In the near future we
will apply this model into more other applications with
temporal patterns, such as routine detection on the human
daily activities [7] and sustainability characterizationof the
temperature curves on the ensemble of chiller units in a
data center [10].
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Appendix

E-step: Expand the right side of Equation (7) we have:

L(γ, φ;α, β, ψ) = logΓ(
k∑

j=1

αj) −
k∑

z=1
logΓ(αz)

+
k∑

z=1
(αz − 1)[Ψ(γz) − Ψ(

k∑

z=1
γj)]

+
N∑

n=1

k∑

z=1
φnz(Ψ(γz) − Ψ(

k∑

j=1

)γj) +
N∑

n=1

k∑

z=1
φnz logβz,wn

+
N∑

n=1

k∑

z=1
φnz log[N (tn|µz , σ

2
z)]

−log Γ(
k∑

j=1

γj) −
k∑

z=1
(γz − 1)[Ψ(γz) − Ψ(

k∑

z=1
γz)]

−
N∑

n=1

k∑

z=1
φnz log φnz

(17)

Estimation ofφnz : isolating the terms in Equation (17) that

referenceφ and including the constraint for
k∑

z=1
φnz = 1.

L[φnz] = φnz [Ψ(γz) − Ψ(
k∑

j=1

γz)] + φnz logβz,wn
− φnz logφnz

+φnz logN (tn|µz, σ
2
z) + λn(

k∑

z=1
φnz − 1)

(18)
Differentiating with respect to the parameter and setting
equal to 0 gives

∂L[φnz ]

∂φnz
= Ψ(γz) − Ψ(

k∑

z=1
γz) + logβz,wn

− logφnz

+logN (tn|µz, σ
2
z) + λn = 0

(19)

φ̂nz ∝ βz,wn
·N (tn|µz, σ

2
z)·exp[Ψ(γz)−Ψ(

k∑

z=1

γz)] (20)

The estimation ofγ is the same as in [3].

M-step: We only need to consider the inference ofµ and
σ2. The inference forβ andα is the same as [3].

L[µz ,σ2
z] =

M∑

s=1

N∑

n=1

φdnz[−
1

2
log(2πσ2

z)−(tdn−µz)
2/2σ2

z ]

(21)
Let ∇L[µz,σ2

z ] = 0 we have

µ̂z =

∑

s,n

φsnztsn

∑

s,n

φsnz

, σ̂2
z =

∑

s,n

φsnz(tsn − µz)
2

∑

s,n

φsnz

(22)
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