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Abstract—We study what we call semi-defined classification,
which deals with the categorization tasks where the taxonomy
of the data is not well defined in advance. It is motivated
by the real-world applications, where the unlabeled data may
also come from some other unknown classes besides the known
classes for the labeled data. Given the unlabeled data, our
goal is to not only identify the instances belonging to the
known classes, but also cluster the remaining data into other
meaningful groups. It differs from traditional semi-supervised
clustering in the sense that in semi-supervised clustering the
supervision knowledge is too far from being representative of
a target classification, while in semi-defined classification the
labeled data may be enough to supervise the learning on the
known classes.

In this paper we propose the model of Double-latent-layered
LDA (D-LDA for short) for this problem. Compared with LDA
with only one latent variable y for word topics, D-LDA contains
another latent variable z for (known and unknown) document
classes. With this double latent layers consisting of y and z
and the dependency between them, D-LDA directly injects the
class labels into z to supervise the exploiting of word topics in
y. Thus, the semi-supervised learning in D-LDA does not need
the generation of pairwise constraints, which is required in
most of the previous semi-supervised clustering approaches. We
present the experimental results on ten different data sets for
semi-defined classification. Our results are either comparable
to (on one data sets), or significantly better (on the other nine
data set) than the six compared methods, including the state-
of-the-art semi-supervised clustering methods.

Keywords-Semi-defined classification, Topic modeling, Gibbs
Sampling, Semi-supervised clustering;

I. INTRODUCTION

Real-world classification tasks often encounter the prob-
lem that the taxonomy of the data cannot be well defined at
the beginning. Given a group of unlabeled data, the domain
experts may not know all the data classes. Usually, they
are only familiar with a subset of all the data classes, and
also agree that the unlabeled data may stem from some
other meaningful clusters. For example, to build a news
portal for one of the Fortune 500 companies we want to
classify the everyday news about this company into some
classes. It is easy to list some corporation news classes, e.g.
“product-related”, “financial report, business and industry

analysis”, “stock review”, “merger and acquisition related”
and so on. However, we cannot exhaustively list all the news
classes which are interesting to news readers. Actually, after
some deep investigation we know that the news about a big
company may include some other classes, such as “business
expansion and new investment”, “partnership and alliance
with other companies”, “charity, donation and citizenship”
etc. Another example is to recognize the relationships be-
tween employees and products in the enterprize internal
Web pages. This task can be converted as a classification
problem for any employee-product pair, however, neither
we do not know all types of employee-product relationships
which exist in the corpus.

In these two examples we are given the labeled instances
from certain pre-defined classes and the unlabeled data,
and aim to not only identify the instances from the known
classes but also exploit new meaningful data clusters. Thus,
it is a combination of supervised classification and un-
supervised clustering. It is worth mentioning that semi-
defined classification can be applied in an iterative manner
in order to build the full version of the data taxonomy.
Specifically, in each iteration round the model outputs not
only the instances in the pre-defined classes but also the new
data clusters. Then, the domain expert can judge whether
certain new cluster is meaningful enough to get a new data
label for the next round of the iteration. If so, we add the
new labeled data into the labeled data set for the next round
of computation. After several rounds, all the unlabeled data
will be classified into the full-fledged data classes.

If we generate the must-link constraints for any pair of
instances in the same pre-defined class and the cannot-link
constraints for any pair of instances in two of the pre-defined
classes, the problem of semi-defined classification can be
considered as a semi-supervised clustering task with hard
constraints. However, it also own its distinct characteristics:
• In traditional semi-supervised clustering the supervision

knowledge is too far from being representative of a target
classification, thus supervised learning might not be possible.
However, in semi-defined classification we may have enough
supervision information, in terms of the labeled data, for the
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supervised learning over the known classes of the data.
• The constraints in traditional semi-supervised clustering

may cover the instances from all the data clusters, however,
those in semi-defined classification only involve with the
data from only the known classes.
• Traditional semi-supervised clustering does not require

that the clustering result is consistent to all the constraints.
However, for semi-defined classification this must be held
since we need to map each known class label to certain data
cluster.

Altogether, the differences between traditional semi-
supervised clustering and semi-defined classification are
summarized in Table I.

Table I
SEMI-SUPERVISED CLUSTERING VS. SEMI-DEFINED CLASSIFICATION

Semi-supervised Semi-defined
clustering classification

size of constraints small big

coverage of constraints any data cluster
only the known

data classes
consistency of constraints not required required

In this paper we propose the topic modeling approaches
to address semi-defined classification. The essential differ-
ence between our method and the previous semi-supervised
clustering methods is that we use the data labels directly
instead of converting them into pairwise constraints. Semi-
supervised clustering is shown to work well when the size
of document corpus is small compared to the dimensionality
of the feature space [3] (under this situation the limited
supervision in the form of constraints can effectively avoid
to be stuck in local optima). However, it is still unknown
whether these previous methods work well for semi-defined
classification where the sizes of data collection and con-
straints are both big.

Compared with the well known topic modeling ap-
proaches such as PLSA [8] and LDA [6], our model has
two latent variables y and z, corresponding to word topics
and (known and unknown) class labels respectively. Thus,
we call the proposed model Double-latent-layered LDA (D-
LDA for short). For D-LDA, we first give its process to
generate document corpus in a un-supervised way, and then
derive the method of parameter learning by Gibbs Sampling.
Next, we show that with the new variable z, representing
document classes, it is natural to incorporate the labels of
some documents into the learning of D-LDA. Specifically,
when z is for a word from a labeled document it is set to
the corresponding class label; when z is for a word from an
unlabeled document it is sampled by the update function in
Gibbs Sampling. In this sense the variable of z is actually
semi-latent. Meanwhile, the variable of y still keeps the
flexibility in exploiting word topics, which may be more
meaningful for classification with the supervision from the
labeled data. Therefore, after Gibbs Sampling any instance
d can be assigned to zd = argmaxz p(z|d) where z can be

any class label. If zd is a pre-defined class d is classified into
a known class. Otherwise, it is grouped into a new class.

To validate our model we construct the ten different data
sets for semi-defined classification. On each data set we
also use different ratio to sample the labeled instances from
a fixed subset of the data classes. Our results are either
comparable to (on one data sets), or significantly better
(on the other nine data sets) than the six compared meth-
ods, including the state-of-the-art semi-supervised clustering
methods. More interestingly, we analytically and empirically
show how the model prior affects the effectiveness of the
proposed model.

Outline. The remainder of this paper is organized as
follows. In Section II we formulate the semi-defined classi-
fication problem and give some preliminaries. The model of
D-LDA and its solutions by Gibbs Sampling, are detailed in
Section III. Section IV presents the systematic experiments
to validate our algorithms, followed by the related work in
Section V. Finally, we give the conclusions and future works
in Sections VI.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem formulation

Formally, the problem of semi-defined classification can
be stated as follows: given 1) the labeled data set Dl =
{(d1, l1), · · · , (dn, ln)} from the known classes K (li ∈
K, i ∈ {1, · · · , n}), 2) the unlabeled data set Du =
{dn+1, · · · , dn+m} which includes the instances from both
the known classes K and the some other unknown classes
U , we aim to produce a function h : D → K∪U that maps
any object d ∈ D to its class label l ∈ K ∪ U . Specifically,
if di(i ∈ {n + 1, · · · , n + m}) comes from the the known
classes K we aim to identify its true class label; meanwhile,
we aim to group the instances not belonging to the known
classes K into clusters.

Note also that although in this paper we mostly focus
on the text data in semi-defined classification our model is
generic to any dyadic data.

B. Preliminaries on topic modeling

PLSA [8] is a statistical model to analyze co-occurrence
data by a mixture decomposition. Specifically, given the
word-document co-occurrence matrix O whose element
Ow,d represents the frequency of word w appearing in
document d, PLSA models O by using a mixture model
with latent topics. All the parameters can be obtained by the
EM solution to the maximum likelihood problem. LDA [6]
with the parameter priors in the form of Dirichlet distribution
gives the full generative process of document corpus.

Both PLSA and LDA contain only one latent variable,
while the proposed model will contain two latent variables,
corresponding to word topics and document classes respec-
tively. Next we will only detail our extension to LDA for
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Figure 1. The graphical models of LDA and D-LDA

this requirement. And the extension to PLSA can be derived
similarly, thus is omitted due to the space limitation.

III. DOUBLE-LATENT-LAYERED LDA

The graphical model of D-LDA is shown in Figure 1(b),
and its sibling of LDA is shown in Figure 1(a). D-LDA
includes two latent variables, i.e. z for document classes and
y for word topics. Compared with LDA the new variable z is
added on the top of y. Thus, in D-LDA the distribution over
word topics is directly dependent on the document class,
while in LDA the distribution over word topics is generated
directly for each document. More detailed, D-LDA assumes
the following generative process for the document corpus:

1) draw multinomial distribution πkl = p(y = l|z = k)
over word topics for each document class z from a
Dirichlet prior δ; draw multinomial distribution φlv =
p(w = v|y = l) over words for each word topic y
from a Dirichlet prior β.

2) for each document d draw a multinomial distribution
θd from a Dirichlet prior α; then each of the N words
wn

a) choose a document class zn ∼ θd;
b) choose a word topic yn from p(yn|zn, π), the

multinomial probability over word topics condi-
tioned on the document class zn;

c) choose a word wn from p(wn|yn, φ), a multino-
mial probability over words conditioned on the
word topic yn.

This way we incorporate the document class into this
model. Thus, the class labels on some of the instances
may supervise the generative process of document corpus.
Meanwhile, the variable of y still keeps the flexibility in
exploiting word topics, which could be more meaningful
since they are conditioned on the document classes.

A. Gibbs Sampling for D-LDA

In this subsection we detail how to derive the param-
eters in D-LDA by Gibbs Sampling. If all the tokens in
a corpus are flatted we get two vectors w and d where
wi = v indicates that the word value of the i-th token is
v ∈ {1, 2, · · · , V } and di = d means that the document ID
of the i-th token is d ∈ {1, 2, · · · , D}. We aim to compute

the posterior distribution of hidden variables given the input
variables w,d, α, β, δ:

p(y, z, θ, π, φ|w,d, α, β, δ)

=
p(y, z, θ, π, φ,w,d|α, β, δ)

p(w,d|α, β, δ)
.

(1)

Note that we use the symmetric Dirichlet prior α, β, δ in this
work, and it is easy to use un-symmetric Dirichlet prior in
this model.

Using Gibbs Sampling it is achieved via the random
sampling of z,y according to the update equation:

U = p(zi, yi|z−i,y−i,w,d, α, β, δ), (2)

where the subscript −i denote the indices excluding i. By
the detailed derivation in the appendix we get

U = O
(−i)
dk + α∑K

k=1(O
(−i)
dk + α)

× O
(−i)
kl + δ∑L

l=1(O
(−i)
kl + δ)

× O
(−i)
lv + β∑V

v=1(O
(−i)
lv + β)

,

(3)

where O
(−i)
dk denotes the occurrences of (di = d ∧ zi = k),

O
(−i)
kl denotes the occurrences of (zi = k ∧ yi = l), O

(−i)
lv

denotes the occurrences of (yi = l ∧ wi = v), all these
counts should exclude the current one.

By (3) we can sample the two variables zi, yi simultane-
ously. Actually we have to compute (L×K) (where L and
K are the numbers of word topics and document classes
respectively) values for one sampling. We can also sample
these two variables separately in the two steps as follows:

p(zi|z−i,y,w,d, α, β, δ) =

O
(−i)
dk + α∑K

k=1(O
(−i)
dk + α)

× O
(−i)
kl + δ∑L

l=1(O
(−i)
kl + δ)

,
(4)

p(yi|z,y−i,w,d, α, β, δ) =

O
(−i)
kl + δ∑L

l=1(O
(−i)
kl + δ)

× O
(−i)
lv + β∑V

v=1(O
(−i)
lv + β)

.
(5)

(4) and (5) can be derived similarly to the derivation of (3).
Since sampling by (4) and (5) only need the computing of
(L+K) values it is more efficiently than the process in (3).
After some initial experiments we find that sampling these
two variables separately does not sacrifice the performance.
Thus, our experiments adopt this more efficient one.

After the Gibbs Sampling process all the parameters in
the model can be obtained as follows,

θdk =
O

(−i)
dk + α∑K

k=1(O
(−i)
dk + α)

,

πkl =
O

(−i)
kl + δ∑L

l=1(O
(−i)
kl + δ)

,
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φlv =
O

(−i)
lv + β∑V

v=1(O
(−i)
lv + β)

.

B. Incorporating label information into D-LDA

It is easy to incorporate the class label of any d ∈ Dl

into D-LDA. Specifically, if the class label of a document
is known we just set the corresponding z to the label rather
than sample it by the update function. If the class label of
a document is unknown we still have to sample its z by the
update function. In this sense the variable of z is actually
semi-latent , and it helps to inject the supervision into the
Gibbs Sampling process.

After the process of Gibbs Sampling converges, each
unlabeled document d is assigned to the document class

zd = argmax
k

Odk. (6)

When zd ∈ K, d is actually classified into one of the known
classes. When zd ∈ U , d is grouped into one of the unknown
classes. The whole procedure of D-LDA for semi-defined
classification is depicted in Algorithm 1.

Algorithm 1 D-LDA for Semi-defined Classification
Input: the data set D = Dl ∪ Du, from which we

can obtain the two vector w, d; the number of
iterations T and the number of word topics L, the
number of document classes K = |K| + |U|; the
priors α, β, δ.

Output:the class label for each document d ∈ Du.
procedure:

1) y is initialized randomly, and z is set as fol-
lows: when d ∈ Dl, we set the corresponding
z to its true class label, otherwise we initialize
it randomly.

2) set t := 1
3) while t < T

a) for all i

• Compute the counts O
(−i)
dk , O

(−i)
kl ,

O
(−i)
lv ;

• Update zi according to Equation (4),
when d ∈ Du;

• Update yi according to Equation (5);

end for
b) t := t + 1;

end while
4) Each document d ∈ Du is assigned to the

class label zd by Equation (6).

C. Discussion on the model prior δ

δ is the Dirichlet prior from which the multinomial
distribution over all the word topics y for each document

class z, denoted by p(y|z), is drawn. The smaller δ is, the
more skewed the generated multinomial distribution is. In
other words the small δ has the bias towards sparsity, and
tend to pick the distributions favoring just a few word topics.
Thus, the distributions generated by a smaller δ are more
different from each other.

Therefore, if we know that in the given corpus the data
distribution of a document class is greatly different from
those of the other classes, we should select a small δ so that
the generated distributions (p(y|z) for each z) are different
from each other. On the contrary, if we know that in the
given corpus the data distribution of a document class is
similar to those of the other classes, we should select a big δ.
In Section IV-D5 we will show that the experimental results
coincide with this analysis.

IV. EXPERIMENTS

In this section, we provide systemic experiments to show
the superiority of our model D-LDA over the compared
methods (Sections IV-D1 and IV-D2), and empirically ana-
lyze how some key factors, including the amount of labeled
instances (Section IV-D3), the degree of data sparsity (Sec-
tion IV-D4), and the model priors (Section IV-D5), affect
the effectiveness of the model.

A. Data preparation

20Newsgroup: 20Newsgroup is a collection of approxi-
mately 20,000 newsgroup documents, which is partitioned
evenly cross 20 different newsgroups, each of which cor-
responds to a unique subcategory. These subcategories are
further grouped into certain top categories. For example,
the four subcategories sci.crypt, sci.electronics, sci.med and
sci.space belong to the top category sci. We conduct our
experiments on four top categories, and eight data sets are
constructed to validate our algorithms, including four easy
tasks (denoted as Easy1, Easy2, Easy3 and Easy4) and four
difficult tasks (denoted as difficult1, difficult2, difficult3 and
difficult4). The description of these eight tasks is detailed in
Table II. To construct an easy task four subcategories from
different top categories are selected (e.g., the data set of
Easy1 consists of the four subcategories of comp.graphics,
rec.autos, sci.crypt and talk.politics.guns). Since the four
subcategories come from the four different top categories,
the degree of the data distribution difference among the
classes is great. Thus, it is easier to partition these data. On
the other side, to construct a difficult task four subcategories
from the same top category are selected. Obviously, the sub-
categories from the same top category have similar topics,
thus they much more difficult to partition. The threshold of
document frequency with value of 15 is used to cut down
the number of word features.

ODP and Amazon: These two data sets are collected
by Yin et al. [16], which are originally used for web
object classification by exploiting social tags. The ODP
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Table II
THE TOP CATEGORIES AND THEIR SUBCATEGORIES IN 20NEWSGROUPS

Tasks Subcategories from Top Categories

Easy1 comp.graphics, rec.autos
sci.crypt, talk.politics.guns

Easy2
comp.os.ms-windows.misc, rec.motorcycles

sci.electronics, talk.politics.mideast

Easy3 comp.sys.ibm.pc.hardware, rec.sport.baseball
sci.med, talk.politics.misc

Easy4 comp.sys.mac.hardware, rec.sport.hockey
sci.space, talk.religion.misc

Difficult1
comp.graphics, comp.os.ms-windows.misc

comp.sys.ibm.pc.hardware, comp.sys.mac.hardware

Difficult2 rec.autos, rec.motorcycles
rec.sport.baseball, rec.sport.hockey

Difficult3
sci.crypt, sci.electronics

sci.med, sci.space

Difficult4
talk.politics.guns, talk.politics.mideast

talk.politics.misc, talk.religion.misc

data contain 5536 web pages from 8 categories, and the
Amazon data include 6155 products information from the
same 8 categories. These data are detailed in Table 1 in[16].
Since the features on each object (web page in ODP and
product in Amazon) are the social tags on it, these data are
extremely sparse. Specifically, the average numbers of tag
words on the objects from ODP and Amazon are 25.76 and
36.75 respectively. These numbers are much smaller than
that (more than 160) in 20Newsgroup.

To generate the semi-defined classification tasks, for each
data set we randomly select k (e.g., k = 2 in our exper-
iments) classes as the known classes (In the experiments,
the known classes are marked with bold in Table II, and for
the tasks odp and amazon, the known classes are Books and
Electronic), and the left classes are used as unknown classes.
For the k known classes, we randomly sample a subset of
the data as the labeled instances, and the sampling ratio r
ranges from 0.1 to 0.6 with an interval 0.05. For each ratio r
we sample the labeled instances three times and the average
results over these samplings are reported.

B. Baseline methods and implementation details

We compare our proposed model D-LDA for semi-defined
classification with the following three types of methods:
• Semi-supervised clustering with constraints. We gen-

erate the pairwise constrains from labeled data to perform
semi-supervised clustering. Let ni be the number of labeled
instances in class i, then we can generate

∑k
i=1 ni(ni−1)/2

must-link constraints and
∑k−1

i=1

∑k
j=i+1 ni×nj cannot-link

constraints. Obviously, the number of constraints increases
in square order of the number of labeled instances. The semi-
supervised clustering algorithms of MPCKMeans [4] and
SS-Kernel-Kmeans [10] are considered for this comparison.
Specifically, two variants of SS-Kernel-Kmeans with the lin-
ear kernel and exponential kernel, denoted as SSKK Linear
and SSKK Exp respectively, are evaluated. The parameters

of SS-Kernel-Kmeans are carefully tuned in the preliminary
experiments.
• Two-step method. In this method, first we train a

classifier (with the prediction confidence) on the labeled
data from the known classes, and then use it to predict
all the unlabeled data. If the prediction confidence over an
unlabeled instance is bigger than a user-specified threshold
τ it is assigned to the known class label. Next, we cluster the
data with the prediction confidence lower than τ by an un-
supervised clustering algorithm. In our experiments we use
Logistic Regression [9] for the first step and CLUTO1 for the
seconde step. We carefully tune the threshold τ from 0.8 to
0.98 with an interval 0.02, and the best and average values
are recorded, denoted as TwoStepmax and TwoStepmean,
respectively.
• Un-supervised clustering. We also evaluate two un-

supervised clustering methods in our experiments. One is the
algorithm of MPCKMeans without any constraint, denoted
by MPCKMeans 0. Another is CLUTO, the same with the
one used in the second step of the Two-step method.

The parameters in D-LDA are set as follows for all the
data sets. The number of document classes is set to the true
class number, the number of word topics to 128, the iteration
number to 2000, and the hyper parameters α = 0.2, δ =
0.4, β = 0.01. These parameters are tuned by some initial
experiments.

C. Evaluation metrics

We evaluate all these methods in terms of the clustering
effectiveness over all the data and the classification accuracy
on the data from the known classes.

We adopt two popular metrics normalized mutual infor-
mation (NMI) and Pairwise F-measure (PF for short) for
clustering evaluation. NMI [7] measures how closely the
clustering algorithm could reconstruct the underlying label
distribution in the data. If L is the random variable denoting
the underlying class labels on the data, and P is the random
variable denoting the cluster assignments, then NMI measure
is defined as:

NMI =
I(P, L)

(H(P ) +H(L))/2
, (7)

where I(X ;Y ) = H(X) − H(X |Y ) is the mutual infor-
mation between the random variables X and Y , H(X) is
the Shannon entropy of X , and H(X |Y ) is the conditional
entropy of X given Y .

We follow the definition of PF in [2], which is the
harmonic mean of pairwise precision and recall.

Pre =
#PairsCorrectlyPredictedInSameCluster

#TotalPairsPredictedInSameCluster
,

(8)

1The code from http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download,
and with the parameter of ”-clmethod=direct -crfun=i1”.

713



ODP Amazon Difficult1 Difficult2 Difficult3 Difficult4 Easy1 Easy2 Easy3 Easy4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Data Sets

N
M

I

MPCKMeans 0

MPCKMeans

SSKK Linear

SSKK Exp

CLUTO

TwoStepmax

TwoStepmean

D-LDA

(a) Clustering evaluation in terms of NMI
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(b) Clustering evaluation in terms of PF-measure

Figure 2. Clustering evaluation over all the algorithms

Rec =
#PairsCorrectlyPredictedInSameCluster

#TotalPairsActuallyInSameCluster
,

(9)

PF =
2× Pre×Rec

Pre+Rec
. (10)

To evaluate the classification accuracy on the data from
the known classes, we use the standard F1 measure. For
each known class we calculate F1i as follows,

F1i =
2× Precisoni ×Recalli

Precisoni +Recalli
, i ∈ {1, · · · , k}, (11)

where Precisoni and Recalli are the precision and recall
on the i-th known class. Then,

F1 =
∑

i

F1i/k, (12)

where k is the number of known classes.

D. Experimental results

We list all the comparison results in this subsection. For
each data set, we have eleven sampling ratios and average
the results over these ratios.

1) Clustering results: The clustering evaluation results
over the ten tasks (eight from 20newsgroup, one on ODP
and one on Amazon) are shown in Figure 2. The measures in
Figures 2(a) and Figure 2(b) are NMI and PF, respectively.
We have the following observations on these results:

1) it is clear that D-LDA significantly outperforms all
the compared methods on the ten data sets, except that
SSKK Linear is slightly better than D-LDA on the task of
Amazon.

2) We also find that the clustering results on the four
easy tasks (Easy1, Easy2, Easy3 and Easy4) are much
better than those on four difficult ones (Difficult1, Difficult2,
Difficult3 and Difficult4). This observation coincides with
our intension in generating these data sets.

2) Classification results on the known classes: Since
it is not easy to map a document cluster output by the
unsupervised and semi-supervised clustering methods to
certain known class, we do not evaluate their classification
accuracy on the documents from the known classes. Thus,
we only compare D-LDA with the Two-step method in terms
of classification accuracy. As shown in Figure 3, it is clear
that D-LDA is significantly better than TwoStepmax and
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Figure 3. Classification results on the known classes in terms of F1

TwoStepmean in terms of F1.
3) The Effect of sampling ratio for the labeled instances:

We also investigate the effect of sampling ratio r for the
labeled instances on the performance of D-LDA. For each
data set eleven sampling ratios are selected from the range
[0.1, 0.6] with interval 0.05. We show these results over
the eight tasks from 20Newsgroup in Figure 4. Figure 4(a),
Figure 4(b) and Figure 4(c) show the values of the measures
NMI, PF −measure and F1, respectively.

From these figures we find: the tendency that the more
amount of the labeled data improves the effectiveness of D-
LDA is more clear over the four difficult tasks than that
over the easy ones. The reason may be the fact that for
the easy tasks only a small amount of the labeled instances
can reach its improvement limit, while for the difficult tasks
more labeled instances continue to increase the effectiveness
of D-LDA.

4) The effect of data sparsity: Then, we check how the
data sparsity relates to the improvement of D-LDA. Here,
the degree of data sparsity can be measured by the average
number of the words in a document from the corpus. The
smaller this number is, the greater the degree of data sparsity
is. Figure 5 shows the results of the improvement of D-LDA
over all the other methods (namely the difference between
the two values), and the data sets are sorted by the decreasing
order of data sparsity. As mentioned in Section IV-A, the two
data sets of ODP and Amazon are the most sparse ones, thus
are ranked near the coordinate origin.

From Figure 5 we can observe the tendency that the less
the degree of data sparsity is, the more improvement D-
LDA achieves. The reason may come from that the topic
modeling method performs better when the word-document
co-occurrence is enough to find more meaningful topics.
Thus, when the document in a corpus contains more words
averagely D-LDA may achieve more improvement.

5) The effect of model prior δ: Finally, we will show
how the prior δ, which generates the multinomial dis-
tributions over word topics for each document class, af-

fects the effectiveness of D-LDA. Here, we select the
two data sets of Difficult1 and Easy1. For each data
set we randomly sample 60% of the labeled instances
from the known classes. Fixing all the other parame-
ters, we evaluate D-LDA under the 15 δ values, namely
{0.02, 0.04, 0.08, 0.2, 0.4, 0.8, 2, 4, 8, 16, 32, 64, 128, 256,
1024}. The results are shown in Figure 6. It is clear that the
difficult task, in which the data distribution of a document
class is greatly different from those of the other classes,
favors the smaller values of δ. On the contrary, the easy
task favors the bigger values of δ. These experimental
results empirically prove the correctness of our analysis in
Section III-C. Therefore, it provides the guidance on how
to select the prior δ according the prior knowledge on the
data.
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Figure 6. Clustering evaluation vs. the prior δ

E. Experiment summary

To highlight the achievements from these experiments we
summarize them as follows.
• We compare D-LDA with the other six methods on the

ten data sets for semi-defined classification. Our results are
either comparable to (on one data set), or significantly better
(on the other nine data sets) than the compared methods, in
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Figure 5. The improvement of D-LDA compared with all the other methods

terms of both clustering over all the data and classification
over the data from the known classes.

• We also empirically analyze how the amount of labeled
instances, the degree of data sparsity, and the model priors
affect the effectiveness of D-LDA. More interestingly, we
show how the prior knowledge on the degree of the data
distribution difference among the document classes can be

injected into the prior parameter δ to improve the model
effectiveness.

V. RELATED WORKS

In this section we introduce some previous works closely
related with our work, including semi-supervised clustering,
semi-supervised classification and topic modeling.
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Semi-supervised clustering exploits a small amount of
knowledge available to help partition unlabeled data into
groups. Researchers have proposed many works in the
past decade, such as [1], [2], [3], [11], [12], [13], [14],
[15]. Basu et at. [3] developed a probabilistic framework
for semi-supervised clustering based on Hidden Markov
Random Fields. This framework provides a general form that
combines constraints and distance learning where different
distances can be used. Lu et al. [12] combined pairwise
constraints with spectral clustering for semi-supervised clus-
tering learning, in which the affinity information is propa-
gated through pairwise constraints. Wang et al. [15] imposed
the pairwise constraints into matrix factorization. Kulis et
al. [10] formulated a framework that unified the vector-based
and graph-based approaches for semi-supervised clustering.
In which they proved an equivalence between a special case
of the HMRF-based semi-supervised clustering objective
and the kernel k-means objective function by constructing an
appropriate kernel. All these methods consider the pairwise
constraints, a more general form of supervision, to guide the
clustering. Since these methods allows the violation of the
constraints it is not easy to map the resultant data clusters
to the known classes which is required by semi-defined
classification. Although we can increase the values of cost
for constraint violation it is still hard to select the right
costs. Instead of using constraints as supervision we directly
leverage label information in our model. The experiments
show that our model significantly outperforms them for
semi-defined classification.

Semi-supervised classification makes use of a large
amount of unlabeled data together with a small set of
labeled data, to build better classifiers [17]. Different from
semi-defined classification, the semi-supervised classifica-
tion learning needs some labeled data from each class. It
indicates that the data taxonomy is well defined in semi-
supervised classification. Thus, semi-supervised classifica-
tion methods cannot be used for semi-defined classification.

Topic modeling provides simple ways to analyze large
volumes of dyadic data. Most topic models, such as
PLSA [8] and LDA [6], are unsupervised. They can be
viewed as the methods of co-clustering for both features
and instances. Blei and McAuliffe [5] proposed supervised
LDA which can predict response values for new instances.
However, this model is only for supervised learning. Our
model D-LDA uses two separate latent variables for docu-
ment clusters and word clusters. The variable for document
clusters gives the interface to inject the label information into
the model, while the variable for word clusters maintains the
flexibility in exploiting meaningful word topics.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we formulate an interesting problem of semi-
defined classification, where the training data are from some
known classes and the test data include not only the ones

from the known classes but also some instances from the
other unknown classes. We aim to simultaneously identify
the instances from the known classes and group the left test
data into some meaningful clusters. Methods to semi-defined
classification are very helpful under the situation that we
cannot give the full version of the data taxonomy and want
to exploit other meaningful data classes except the known
ones. Along this line we propose the topic model of D-LDA
for this task. The experiments on the tasks built from the
real-world data sets validate the effectiveness of this model.

With the proposed model of D-LDA, the building of the
full data taxonomy for a corpus becomes an interactive
and explorative process. After each round of semi-defined
classification, human judgement is required to check whether
it is necessary to give a new class label to certain new data
cluster and then select the representative points in the new
class as the new labeled data for the next round of semi-
defined classification. How do we select these instances
for labeling in order that the next round of computing is
more effective? This task, the combination of semi-defined
classification and active learning, will be our promising
future work.
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APPENDIX

Step1. expand joint distribution and integrate the param-
eters:: The joint distribution given α, β, δ can be written as
follow according to Figure 1(b):

p(y, z,w,d, θ, φ, π|α, β, δ)
= p(θ|α)p(π|δ)p(φ|β)p(y|z, π)p(w|y, φ)p(z|d, θ)p(d)

(13)
Integrate each side of (13) over θ, π, φ we have:

p(y, z,w,d|α, β, δ)

= p(d) ·
∫

p(θ|α)p(z|d, θ) dθ ·
∫

p(π|δ)p(y|z, π)dπ

·
∫

p(φ|β)p(w|y, φ) dφ

= p(d) · p(z|d, α) · p(y|z, δ) · p(w|y, β)
(14)

Step2. the update function in the form of the joint distri-
butions:: Using Bayes rule, the right side of (2) is

U =
p(zi, yi, z−i,y−i,w,d|α, β, δ)

p(z−i,y−i,w,d|α, β, δ)
(15)

The denominator could be written as:

p(z−i,y−i,w−i,d−i|wi, di, α, β, δ) · p(wi, di) (16)

Since wi, di are independent to z−i,y−i and p(wi, di) is
constant, we have:

U ∝ p(z,y,w,d|α, β, δ)
p(z−i,y−i,w−i,d−i|α, β, δ)

(17)

Step3. expand the joint distributions in the update
equation:: Note that p(z−i|d−i, α) = p(z−i|d, α),
p(y−i|z−i, δ) = p(y−i|z, δ) and p(w−i|y−i, β) =
p(w−i|y, β). Substituting (14) into (17) we have:

U ∝ p(z|d, α) · p(y|z, δ) · p(w|y, β)
p(z−i|d, α) · p(y−i|z, δ) · p(w−i|y, β)

=
p(zi, z−i|d, α)
p(z−i|d, α)

· p(yi,y−i|z, δ)
p(y−i|z, δ) · p(wi,w−i|y, β)

p(w−i|y, β)
(18)

Using the Bayes rule again, we have:

U ∝ p(zi|z−i,d, α)︸ ︷︷ ︸
i

· p(yi|y−i, z, δ)︸ ︷︷ ︸
ii

· p(wi|w−i,y, β)︸ ︷︷ ︸
iii

(19)
Step4. applying the properties of Dirichlet distribution::

Writing (19.i) back into integration form and for each
document d we have:

p(zi = k|z−i, di = d, α) =
∫

p(zi = k|di = d, θdk)·
p(θdk|z−i, di = d, α)dθdk

(20)

where p(zi = k|di = d, θdk) is just θdk and p(θdk|z−i, di =
d, α) is posterior distribution of θdk. We use Odk denotes
the occurrences of (di = d ∧ zi = k), Od(·) for the vector

(Od1, Od2, ..., OdK) and O
(−i)
dk means the count should

exclude the current one. Since Od(·) ∼ Mult(θd(·)) and the
prior of θd is Diri(α), the posterior distribution of θdk given
the observation (z−i, di = d) is Diri(θdk;O

(−i)
d(·) +α). Then

according to the conjugate relationship between Dirichlet
distribution and multinomial distribution,

p(zi = k|z−i, di = d, α) =
∫

θdk ·Diri(θdk;O
(−i)
d(·) +α)dθdk

(21)
We see that (21) is just the expectation of the posterior of
θdk. Then ,

p(zi = k|z−i, di = d, α) =
O

(−i)
dk + α∑K

k=1(O
(−i)
dk + α)

(22)

Analogously for (19.ii) and (19.iii) we have:

p(yi = l|y−i, zi = k, δ) =
O

(−i)
kl + δ∑L

l=1(O
(−i)
kl + δ)

, (23)

p(wi = v|w−i, yi = l, β) =
O

(−i)
lv + β∑V

v=1(O
(−i)
lv + β)

, (24)

where Okl and Olv is the occurrences of (zi = k ∧ yi = l)
and (yi = l ∧wi = v) and the superscript •(−1) still means
the counts should exclude the current one. Substituting them
into (19) we have the result in (3).
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