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Abstract

Ensemble learning with output from multiple su-
pervised and unsupervised models aims to improve
the classification accuracy of supervised model en-
semble by jointly considering the grouping results
from unsupervised models. In this paper we cast
this ensemble task as an unconstrained probabilis-
tic embedding problem. Specifically, we assume
both objects and classes/clusters have latent coor-
dinates without constraints in a D-dimensional Eu-
clidean space, and consider the mapping from the
embedded space into the space of results from su-
pervised and unsupervised models as a probabilis-
tic generative process. The prediction of an object
is then determined by the distances between the ob-
ject and the classes in the embedded space. A so-
lution of this embedding can be obtained using the
quasi-Newton method, resulting in the objects and
classes/clusters with high co-occurrence weights
being embedded close. We demonstrate the ben-
efits of this unconstrained embedding method by
three real applications.

1 Introduction

Recently, an interesting problem that combines multiple su-
pervised and unsupervised models at output level has been
proposed [Gao et al., 2009]. It is an extension of previ-
ous studies on classification ensembles (combining only su-
pervised models) and clustering ensembles (combining only
unsupervised models). Here, it combines the output from
both supervised models and unsupervised models, and aims
to fully utilize the constraints provided by unsupervised clus-
terings to improve prediction accuracy for classification. The
solution to this problem is in great need, where the raw data
cannot be accessed due to privacy or other issues and the out-
put from multiple supervised and unsupervised models is pro-
vided.

This problem can be formulated as follows. Suppose we
have a set of data objects O = {o1, o2, · · · , oN} from c
classes. There are M models that provide the classifica-
tion information of O, where the first r of them are super-
vised classifiers, and the left are unsupervised clustering al-
gorithms. Here, we only consider “hard” classification and

clustering algorithms, i.e., the object o is predicted to be
in exactly one class or cluster. Consider an example where
O = {o1, · · · , o6}, c = 2 and M = 4. The output of the four
models are: M1 = {1, 2, 1, 1, 2, 2}, M2 = {1, 1, 2, 1, 2, 2},
M3 = {2, 2, 1, 1, 3, 3}, M4 = {2, 2, 2, 2, 1, 1}, where M1

and M2 assign each object a class label, whereas M3 and M4

partition the objects into multiple clusters and assign each ob-
ject a cluster ID.

The objective is to predict the class label of oi ∈ O

based on the ensemble of base classification and clustering
results. The prediction of this proposed ensemble satisfies as
much as possible that 1) it agrees with the base classifiers’
prediction, and 2) the objects in the same cluster have the
same prediction.

Object-Group Co-occurrence Matrix

Before briefly introducing our general solution to this
problem, we give the concept of groups, referring to the
classes and clusters from the models, and object-group
co-occurrence matrix. Note that the taxonomy of data is
predefined for classification, and the same class ID assigned
by different classification algorithms have the same meaning.
However, the clusters from different clustering algorithms
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Figure 1: The Multi-Models and Corresponding Groups
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have different meaning, and cluster IDs are not related to
class labels. Therefore, we can assign a group ID to each
class label and each cluster. Assume that clustering algorithm
i partitions the data O into li clusters, then the total number

of groups is G = c+
∑M

i=r+1
li.

Consider our example again. M3 partitions the objects into
3 clusters, while M4 partitions them into 2 clusters. Thus,
G = 7 in this example. Figure 1 shows the grouping re-
sults in the example. As you can see, the groups from the
classification algorithms M1 and M2 share the same group
IDs, namely g1 and g2. However, the different clusters from
the clustering algorithms M3 and M4 use the different group
IDs.

Based on the assignment of group IDs, we can generate an
object-group co-occurrence matrix MN×G, where Mn,g is
equal to the number of times that object n belongs to group
g. Table 1 shows this co-occurrence matrix for our example.
Obviously, when group g is for a class label (say g1 and g2
in the example), Mn,g may be bigger than 1. For example,
M1,1 = 2 in Table 1 since object 1 belongs to group 1 twice.
However, when group g is for a cluster (say g3, g4, g5, g6, g7
in the example), Mn,g can only be 0 or 1.

classification clustering 1 clustering 2
g1 g2 g3 g4 g5 g6 g7

o1 2 0 1 0 0 1 0
o2 1 1 1 0 0 1 0
o3 1 1 0 1 0 1 0
o4 2 0 0 1 0 1 0
o5 0 2 0 0 1 0 1
o6 0 2 0 0 1 0 1

Table 1: The Object-Group Co-occurrence Matrix M6×7

Constrained vs. Unconstrained Embedding
Gao et al. [Gao et al., 2009] proposed a constrained em-

bedding solution to this ensemble task. In their method, each
object and class/cluster are embedded into a c-dimensional
cube. Additionally, it is a constrained embedding in the sense
that the sum of all the entries in each c-dimensional coordi-
nate must be equal to 1. It means that the embedded space is
limited as a c-dimensional simplex, and the i-th entry in the
coordinate of an object can be viewed as the probability that
this object belongs to the i-th class. See our example of binary
classification again. The obtained coordinate for each object
is a 2-entry probability vector (v1, v2), where v1+v2 = 1 and
v1 (or v2) is the probability that this object belongs to class 1
(or 2).

In this study we solve this ensemble problem by Uncon-
strained Probabilistic Embedding (UPE for short). We as-
sume that each object and group correspond to a latent co-
ordinate without any constraint in a D-dimension Euclidean
space. With these coordinates the generation of the object-
group co-occurrence matrix can be viewed as a probabilistic
generative process. Then, by maximizing the posterior of pa-
rameters all these coordinates can be obtained, and the predic-
tion of an object is determined by the distances between the
object and the groups for the c classes in the embedded space.
Different from the constrained embedding method in [Gao et

al., 2009], no constraints are imposed into the latent coor-
dinates in our solution. Additionally, the dimension of the
embedded space D can be any positive integer while that in
the constrained embedding must be c, the number of class la-
bels. We argue that with more freedom in fitting the data into
any coordinates in any dimension space our solution might
achieve better predictions.

The remainder of this paper is organized as follows. Sec-
tion 2 details our solution of UPE, including the generative
process from the coordinates for objects and groups to the
object-group co-occurrence matrix, and the derivation of the
model parameters by the quasi-Newton method. In Section 3,
we demonstrate the effectiveness of UPE by three real appli-
cations and compare it with existing alternatives. Section 4
concludes this study.

2 Unconstrained Probabilistic Embedding

For clarity and convenience, the notation and denotation used
in this study are summarized in Table 2.

M The object-group co-occurrence matrix

M The number of models

r The number of classification algorithms in the M models

li The number of clusters from the i-th clustering algorithm

c The number of class labels

G The total number of groups

N The number of objects to be predicted

g The index of groups

n The index of objects

xn The coordinate of the n-th object in the embedded space

X The set of all the object coordinates

φg The coordinate of the g-th group in the embedded space

Φ The set of all the group coordinates

D The dimensionality of the embedded space

Table 2: The Notation and Denotation

2.1 From Latent Space to Object-Group
Co-occurrence Matrix

Now we embed the objects and groups to a new space. We
assume the objects have latent coordinates X = {xn}

N
n=1,

where xn = (xn1, · · · , xnD) is a coordinate of the n-th ob-
ject in the embedded space, and D is its dimensionality. Sim-
ilarly, we assume each group g also has its associated latent
coordinate φg = {φg1, · · · , φgD} in the embedded space.
The probability of an object belonging to a certain group is
determined by its Euclidean distances from each group in the
embedded space as follows:

P (g|xn,Φ) =
exp(− 1

2
‖xn − φg‖

2
)

∑G

g′=1
exp(− 1

2
‖xn − φg′‖2)

. (1)

where
∑G

g=1
P (g|xn,Φ) = 1, and ‖ · ‖ represents the Eu-

clidean norm in the latent space. Obviously, if the Eu-
clidean distance between xn and φg is small, the probability
P (g|xn,Φ) is high.
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Figure 2: The Graphical Model of UPE

Our model assumes the probabilistic generative process of
the object-group co-occurrence matrix M as shown in Algo-
rithm 1. First, the coordinates xn and φg are assumed to be
generated by the zero-mean spherical Gaussian distributions.
Then, for an object n we draw the group ID M times using
the multinomial distribution Mult({P (g|xn,Φ)}Gg=1). Each
entry in the parameters of this multinomial distribution is cal-
culated by xn and Φ via Equation (1). If g′ is drawn for n, we
add 1 to Mn,g′ . This process ends after we sample the groups
for all the N objects. Figure 2 shows the graphical model rep-
resentation of UPE, where the observed and latent variables
are indicated by shaded and unshaded nodes, respectively.

Algorithm 1 Generative Process for the Object-Group Co-
occurrence Matrix

1. Initialize the object-group co-occurrence matrix :

Mn,g = 0

where n = 1, · · · , N and g = 1, · · · , G

2. For each group g = 1, · · · , G:

Draw group coordinate

φg ∼ Normal(0, β−1
I).

3. For each object n = 1, · · · , N :

(a) Draw object coordinate

xn ∼ Normal(0, γ−1
I)

(b) For m = 1, · · · ,M :

i. Draw group

g′ ∼ Mult({P (g|xn,Φ)}Gg=1).

ii. Increase corresponding weight by 1,

Mn,g′ ++.

Our model is motivated by PLSV (Probabilistic Latent Se-
mantic Visualization) [Iwata et al., 2008], which is a topic
modeling based visualization method for documents. In that
model the document-word occurrence matrix is taken as in-
put, and the documents and latent topics are embedded into a
2 or 3 dimension space for visualization. To compare PLSV
with our model of UPE, we may view objects in our prob-
lem as documents, and groups as words. Then, the difference
between UPE and PLSV is as follows. First, there are not la-
tent topics in UPE. Second, in UPE not only documents but
also words are embedded into a D dimension space. Third,
since PLSV is used for visualization, the dimension of the
embedded space must be 2 or 3, while that for UPE can be
any positive integer.

2.2 Parameter Estimation

The unknown parameters are a set of object coordinates X

and a set of group coordinates Φ. We estimate these parame-
ters based on Maximum A Posteriori (MAP) estimation. The
posterior of the parameters is given as follows,

p(X,Φ|M) =
p(M|X,Φ)p(X)p(Φ)

p(M)
, (2)

where

P (M|X,Φ) =
N∏

n=1

G∏

g=1

P (g|xn,Φ)Mn,g , (3)

p(X) =
N∏

n=1

p(xn), (4)

p(Φ) =
G∏

g=1

p(φg) (5)

In the generative process described in the previous subsec-
tion, we use a Gaussian prior with a zero mean and a spher-
ical covariance for distribution of the coordinates of xn and
φg. Then, we have

p(φg) = (
β

2π
)

D
2 exp(−

β

2
‖φg‖

2), (6)

p(xn) = (
γ

2π
)

D
2 exp(−

γ

2
‖xn‖

2). (7)

where β and γ are hyper-parameters. We choose β = λN ,
γ = λG, and λ (0 ≤ λ ≤ 1) is a coefficient. In the experi-
ment section we will discuss the influence of different values
of λ.

Next, we estimate parameters X,Φ by maximizing the
posterior p(X,Φ|M) in Equation (2). By applying the log
function, it is equivalent to the following optimization prob-
lem,

{X,Φ} = max
X,Φ

Q(X,Φ) (8)

where

Q(X,Φ) =
N∑

n=1

G∑

g=1

Mn,g logP (g|xn,Φ)+

N∑

n=1

log p(xn) +

G∑

g=1

log p(φg)

(9)
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We use the quasi-Newton method [Liu and Nocedal, 1989]

to maximize Q(X,Φ). The partial differentials of Q(X,Φ)
w.r.t. xn and φg are as follows respectively,

∂Q

∂xn

=

G∑

g=1

(M · P (g|xn,Φ)−Mn,g)(xn − φg)− γxn

(10)

∂Q

∂φg

=

N∑

n=1

(M · P (g|xn,Φ)−Mn,g)(φg − xn)− βφg

(11)
By applying the quasi-Newton method until convergence,

we obtain a local optimum solution for {X,Φ}, including
the coordinates of objects and groups in the embedded space.
Then we can predict the label of object n as follows,

g′ = max
1≤g≤c

P (g|xn,Φ) (12)

Remember that our task is for classification. Thus, in the
prediction process we only consider the first c groups, corre-
sponding to the c class labels, for comparison. This prediction
process is equivalent to

g′ = min
1≤g≤c

‖xn − φg‖
2
, (13)

where ‖ · ‖ represents the Euclidean norm in the latent space.

3 Experiments

3.1 Data Set

We apply the proposed method on the data set from [Gao et
al., 2009], including 11 classification tasks from three real
world applications. In each task, the data set is separated into
training and test sets. Clustering algorithms are performed on
the test set to obtain the grouping results. On the other hand,
we learn classification model from training set and apply it to
the test set. The proposed algorithm generates a consolidated
classification solution for the test set based on both classifica-
tion and clustering results. The details of each application is
elaborated in the following.
20 Newsgroups categorization. The 20 newsgroups data
set1 contains approximately 20,000 newsgroup documents,
partitioned across 20 different newsgroups nearly evenly.
From the data sets, six learning problems are constructed,
each of which has documents from four different topics to
distinguish. The logistic regression [Genkin et al., 2005] and
SVM models [Chang and Lin, 2001] are learned from the
training sets, and apply, as well as K-means and min-cut clus-
tering algorithms [Karypis, 2006] on the test sets.
Cora research paper classification. The Cora data set [Mc-
Callum et al., 2000] contains around 37,000 research papers
that are classified into a topic hierarchy with 73 leaves. The
citations among papers are around 75,000 entries. Four test
sets are extracted, each of which includes papers from around
four areas. The training sets contain research papers that are
different from those in the test sets. Both training and test sets
have two views, the paper abstracts, and the paper citations.

1http://people.csail.mit.edu/jrennie/20Newsgroups/

The logistic regression classifiers and K-means clustering al-
gorithms are applied on the two views of the target sets.
DBLP network. Around 4,000 authors are retrieved from
DBLP network [Ley, 2001]. We try to predict their research
areas in four candidate fields. There are also two views for
both training and test sets, namely the publication network
and the textual content of the publications. The amount of
papers an author published in the conference can be regarded
as link feature, whereas the pool of titles that an author pub-
lished is the text feature. Logistic regression and K-means
clustering algorithms are used to derive the predictions on the
test set. The test set is labeled manually for evaluation.

3.2 Baseline Methods

On each test set, two classification models and two clustering
models (denoted as M1 to M4) are obtained by applying four
different algorithms. Then we applied the ensemble methods
on the four models. In [Gao et al., 2009] the constrained em-
bedding solution, namely Bipartite Graph-based Consensus
Maximization (BGCM for short) is compared with the two
clustering ensemble approaches, MCLA [Strehl and Ghosh,
2003] and HBGF [Fern and Brodley, 2004], which regard all
the base models as unsupervised clustering, and integrate all
their output. They show that BGCM improves the accuracy
of the best single model by 2% to 10%.

Here, we focus on the comparison between UPE and
BGCM, and also give the results of the baselines in [Gao et
al., 2009]. To evaluate classification accuracy, The output of
all the clustering algorithms (the base models, and the ensem-
bles) are mapped to the best possible class predictions with
the help of hungarian method2 [Kuhn, 1955], where cluster
IDs are matched with class labels. In addition, the results of
Majority Voting on only the classification models (denoted
as MV) are presented. We denote the proposed methods as
UPE-D, where D refer to the number of dimension used for
the embedded space. D is set from 1 to 4 in the experiments.
Note that UPE has some random property since the initial
parameters are drawn from a spherical Gaussian distribution.
Thus, we run our solution 20 times with different initializa-
tion for each task, and calculate the average value as the re-
sult.

3.3 Experimental Results

In Table 3, we present the classification accuracy of UPE-
D and the other baselines on eleven tasks, and the highest
accuracy of each task is bolded. The graphical comparison of
UPE and BGCM is also shown as Figure 3. We can see that
UPE-2 is already better than BGCM, which indicates that our
unconstrained embedding method in 2-dimensional space is
already better than the constrained embedding method in a
c-dimensional space (c = 4 in these tasks). Additionally,
UPE-3 further improves the accuracy. Among the 11 tasks
UPE-3 achieves 7 best results, and it increases the accuracy
by 1.3% to 4.4% in 10 cases compared with BGCM. Also
UPE-4 achieves similar performance with UPE-3.

As described before, two hyper-parameters β and γ are
used in the prior distribution of the coordinates. They are

2N. Borlin, http://www.cs.umu.se/ niclas/matlab/assignprob/
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Methods
20Newsgroup Cora DBLP

Average
1 2 3 4 5 6 1 2 3 4 1

M1 0.7967 0.8855 0.8557 0.8826 0.8765 0.888 0.7745 0.8858 0.8671 0.8841 0.9337 0.8664

M2 0.7721 0.8611 0.8134 0.8676 0.8358 0.8563 0.7797 0.8594 0.8508 0.8879 0.8766 0.8419

M3 0.8056 0.8796 0.8658 0.8983 0.8716 0.902 0.7779 0.8833 0.8646 0.8813 0.9382 0.8698

M4 0.777 0.8571 0.8149 0.8467 0.8543 0.8578 0.7476 0.8594 0.781 0.9016 0.7949 0.8266

MV 0.7819 0.8722 0.8239 0.8639 0.8567 0.8631 0.8643 0.9079 0.8161 0.88 0.9105 0.8582

MCLA 0.7592 0.8173 0.8253 0.8686 0.8295 0.8546 0.8703 0.8388 0.8892 0.8716 0.8953 0.8472

HBGF 0.8199 0.9244 0.8811 0.9152 0.8991 0.9125 0.7834 0.9111 0.8481 0.8943 0.9357 0.8841

BGCM 0.8128 0.9101 0.8608 0.9125 0.8864 0.9088 0.8687 0.9155 0.8965 0.909 0.9417 0.8930

UPE-1 0.8074 0.8948 0.8563 0.8969 0.8851 0.8995 0.8493 0.8833 0.9074 0.8876 0.9032 0.8791

UPE-2 0.8438 0.9383 0.9002 0.9333 0.9211 0.9200 0.8793 0.9038 0.9196 0.9138 0.9530 0.9115

UPE-3 0.8444 0.9389 0.8983 0.9423 0.9211 0.9259 0.8839 0.9069 0.9174 0.9128 0.9541 0.9133

UPE-4 0.8431 0.9389 0.8970 0.9414 0.9211 0.9259 0.8748 0.9069 0.9101 0.9190 0.9492 0.9116

Table 3: Classification Accuracy Comparison
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Figure 3: The accuracy of BGCM and UPE-D.
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Figure 4: The accuracy on Cora data set with different λ
value.

set as β = λN and γ = λG. In the previous experiments,
we fix λ = 0.1 for UPE. Here, on the date set of Cora we
check the sensitivity of this parameter by changing it from
0.01 to 0.20 with 0.01 as interval. As shown in Figure 4,

when 0.05 ≤ λ ≤ 0.19, the performance is not sensitive.
We also check whether the random initialization of the co-

ordinates affects the performance of UPE. Since we run 20
times with different initialized values for each task, we can
calculate the standard deviation of the 20 values. The results
show that when λ ≤ 0.2 the standard deviation is less than
0.01. However, when λ > 0.2 the standard deviation in-
creases, and exceeds 0.15 when λ > 0.4. Therefore, λ > 0.2
UPE is not stable in terms of the random initialization. For-
tunately, it is very stable when λ ≤ 0.2.

4 Conclusions

In this paper we propose an unconstrained probabilistic em-
bedding solution to combine output from multiple supervised
and unsupervised models. In our solution each object and
group are embedded into a D dimensional space without any
constraints. We argue that the more freedom in the embed-
ding process of our solution will result in performance im-
provement. By considering the mapping from the coordinates
in the embedded space into the object-group co-occurrence
matrix as a generative process, we can obtain these coordi-
nates by the MAP estimation. This optimization problem is
then solved by the quasi-Newton method. With the 11 tasks
from three real applications we show the superiority of our
solution over the constrained embedding method.
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