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ABSTRACT
Multi-task multi-view learning deals with the learning sce-
narios where multiple tasks are associated with each other
through multiple shared feature views. All previous works
for this problem assume that the tasks use the same set
of class labels. However, in real world there exist quite a
few applications where the tasks with several views corre-
spond to different set of class labels. This new learning
scenario is called Multi-task Multi-view Learning for Hetero-
geneous Tasks in this study. Then, we propose a Multi-tAsk
MUlti-view Discriminant Analysis (MAMUDA) method to
solve this problem. Specifically, this method collaboratively
learns the feature transformations for different views in dif-
ferent tasks by exploring the shared task-specific and prob-
lem intrinsic structures. Additionally, MAMUDA method
is convenient to solve the multi-class classification prob-
lems. Finally, the experiments on two real-world problems
demonstrate the effectiveness of MAMUDA for heteroge-
neous tasks.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Machine Learn-
ing

Keywords
Multi-task Learning; Multi-view Learning; Heterogeneous
Tasks; Discriminant Analysis; Multi-class Classification

1. INTRODUCTION
Many real-world problems exhibit dual-diversity. Indeed,

it is often to see that a single learning task has features
in multiple views. This is known as multi-view learning.
Also, there are multi-task learning scenarios, where differ-
ent learning tasks might be related with each other through
one or more shared views (features). For example, the task
of classifying web pages from Yahoo 1 is related with the

1http://www.yahoo.com/
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task to classify web pages from Open Directory Project 2.
Meanwhile, we can obtain three views of features for a given
web page including the content of the web page, the an-
chor text attached to hyperlinks pointing to this we bpage,
and the link structure of all linked web pages. Another
example is the music classification problem. As we know,
classifying English songs and Chinese songs are two related
tasks, and both tasks have audio features. However, these
two tasks also have task-specific features, such as Chinese
song lyric and English song lyric. Such type of problems are
widely known as Multi-task Multi-view (MTMV) learning
problems [14, 26, 16].

The traditional multi-task learning (MTL) [5, 6, 7, 22]
or multi-view learning (MVL) [4, 8, 21] methods are not
designed for the MTMV problem. There are MTMV learn-
ing methods [14, 26, 16], which can make a good use of
the information contained in multiple tasks and multiple
views. However, they all have the assumption that the mul-
tiple classification tasks have the same set of class labels,
and they are designed for binary classification problems. In
many real-world applications, multiple tasks often do not
share the same set of labels. For example, in the web page
classification problem, the categories in Yahoo and the Open
Directory Project are not the same. In other words, each
task has a task-specific class label set. Similarly, for the mu-
sic classification problem, English songs usually have differ-
ent categories from Chinese songs because of the difference
between western and eastern culture. In this paper, we call
this type of problem as the MTMV problem with heteroge-
neous tasks. In contrast, the traditional MTMV problem,
in which all tasks share the same label set, is treated as the
MTMV problem with homogeneous tasks. Figure 1 shows
the difference of these two types of problems.
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Figure 1: Two Types of MTMV Problems
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Existing MTMV learning methods [14, 26, 16] are not de-
signed for MTMV problems with heterogeneous tasks, since
they assume all the tasks have the same class label set and
they share knowledge among multiple tasks by sharing some
class-dependent model parameters. Also, they are binary
classification methods, which require nontrivial extensions
in order for them to handle multi-class problems, especially
when the number of classes is large.
To this end, in this paper, we propose a Multi-tAsk MUlti-

view Discriminant Analysis (MAMUDA) learning method.
Since multiple views of features exist in the problem, it is
difficult to directly share knowledge through the original fea-
ture space. To facilitate information sharing, this paper ex-
tends the classical LDA method [12] and collectively learns
the feature transformation matrices for all the views from
each task. The classical LDA model tries to transform a
feature vector x (row vector) in the original feature space
into a vector x′ in the discriminant feature space, through
which the data become more separable. This process is ex-
plicitly shown in Figure 2, which also can be written in the
equation xW = x′. Here, W is the matrix for feature trans-
formation.
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Figure 2: LDA Feature Transformation Process
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Figure 3: MAMUDA Feature Transformation Pro-
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In our method, the transformation is divided into two
steps, which is shown in Figure 3. First, through the trans-
formation matrix Qv

t , a data sample x from the view v in
task t is transformed into an intermediate latent space. {Qv

t }
are dependent on the views and tasks, thus they are different
for different views and tasks. Through {Qv

t }, all the views
from all the tasks are transformed into a common interme-
diate latent space that is shared by all the views from each
task. Then, through {Rv

t }, an instance from each view of
each task is transformed from the common intermediate la-
tent space into their corresponding discriminant space. Rv

t

contains two parts of information. One is R, which is shared
by all the views from every task. The other part Rt is shared
by the views for a specific task t. They help the knowledge
sharing among tasks and views.
With these assumptions we formulate an optimization prob-

lem which collaboratively learns the feature transformations
of the data from each view and each task. An alternating
optimization algorithm is proposed to solved the problem,
where each subproblem can be guaranteed to achieve global
optimality. With the transformation matrices Qv

t and Rv
t ,

the data can be transformed into the discriminant space.
Namely, for a data vector x from the view v and task t, its
corresponding discriminant space representation is xQv

tR
v
t .

Then, the nearest neighbor classifier is used to make predic-
tion in the discriminant feature space.

In summary, our method has several advantages. First,
it does not require that multiple tasks share the same class
label set and can solve the MTMV problem with hetero-
geneous tasks. Second, by using a simple nearest neighbor
classifier in the final discriminant feature space, it is very
convenient to solve multi-class classification problems. Fi-
nally, it can deal with the scenarios when some views may
be missing in some tasks.

2. PROBLEM BACKGROUND
Here, we first define the MTMV problem with heteroge-

neous tasks. Then, we introduce some preliminaries.

2.1 MTMV Problem Def nition
Notations. Let [N : M ] (M > N) denote a set of integers

in the range of N to M inclusively, tr(X) be the trace of
matrixX, X−1 be the inverse ofX, ‖·‖ denote the Frobenius
norm of a matrix, and Il be the l× l identity matrix. Unless
specified otherwise, all vectors are column vectors.

The MTMV problem definition is very similar to [26, 16],
except that our formulation is more flexible as we do not
restrict that all the tasks have the same set of class labels.
Assume that the problem includes T tasks and V views in
total. For each task t ∈ [1 : T ], there are nt labeled exam-
ples, thus we have N =

∑

t
nt . Let dv be the number of

features in the view v ∈ [1 : V ], and the total number of
features D =

∑

v
dv.

Feature matrix Xv
t ∈ R

nt×dv is used to denote the labeled
samples in task t for view v, each row represents a sample.
Let Yt ∈ [1 : Ct]

nt×1 be the label vector of the labeled ex-
amples in task t, where Ct is the number of classes in task
t. In the ideal situation, every task has features from all the
V views. However, in reality, it is common that, in some
applications, not all tasks have features available from all
the V views, so an indicator matrix Iid ∈ {1, 0}T×V is used
to mark which view is missing from which task; that is, if
the task t contains view v then Iid(t, v) = 1, and 0 other-
wise. Using this notation, we only consider the “structured”
missing views [26] in the sense that, if a view is present in
a task, it is present in all the samples in the task; if a view
is missing from a task, it is missing in all the samples in the
task. Throughout the paper, we use subscripts to denote
tasks and superscripts to denote views.

The goal of this paper is to leverage the information from
all the tasks and all the views to help each other classify the
unlabeled test samples in each task.

2.2 Linear Discriminant Analysis (LDA)
Linear Discriminant Analysis (LDA) [12] is a popular su-

pervised dimensionality reduction technique in pattern recog-
nition and machine learning. Traditionally, LDA is used for
single learning tasks with single view data. Assume that
there are N labeled training samples, represented by feature
matrix X ∈ R

N×d and label vector Y ∈ [1 : C]N×1, where
each row vector xi in X denotes a sample and its label yi is
the i-th element of vector Y , d is the number of features and
C is the number of classes. There are Nc samples in c-th
class, i.e.,

∑C

c=1 Nc = N . Let us define between-class scat-

ter matrix Sb =
∑C

c=1
Nc

N
(m̄c − m̄)⊤(m̄c − m̄), within-class

scatter matrix Sw =
∑C

c=1

∑

yi=c
1
N
(xi−m̄c)

⊤(xi−m̄c) and

total scatter matrix Sh =
∑N

i=1
1
N
(xi − m̄)⊤(xi − m̄), where

m̄ = (
∑N

i=1 xi)/N is the sample mean for the whole training
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set and m̄c = (
∑

yi=c
xi)/Nc is the class mean of the c-th

class. It can be easily verified that Sh = Sb + Sw. There
are two types of objective functions for LDA that are widely
used. The first one is the ratio trace form [12]:

W ∗ = argmax
W

tr
(

(W⊤SwW )−1W⊤SbW
)

, (1)

and the second one is in the trace ratio form [23]:

W ∗ = arg max
W⊤W=Il

tr(W⊤SbW )

tr(W⊤ShW )
, (2)

where l is the reduced dimensionality of the trace ratio form,
W ∈ R

d×l is the transformation matrix for dimension re-
duction. The solution of the ratio trace form can be ob-
tained by computing the eigenvectors of the matrix S−1

w Sb,
while the trace ratio form has no analytical solution and
has to resort to an iterative method to obtain the optimal
solution. However, the trace ratio form has a much clearer
physical meaning. The numerator and denominator of the
objective function in the trace ratio form represent the av-
erage between-class distance and average total distance in
the low-dimensional space, respectively, which is consistent
with the aim of LDA that tries to maximizing the within-
class similarity and minimizing the between-class similarity
simultaneously. In this paper, the trace ratio form is used.
For classification problems, after obtaining the transfor-

mation matrix W , the data sample x in the original feature
space can be transformed into the discriminant space by
computing xW . Then, nearest neighbor classifier can be
used to make predictions in the discriminant space.

3. MULTI-TASKMULTI-VIEWDISCRIMI-
NANT ANALYSIS

For Multi-task Multi-View (MTMV) learning, if we do
not consider the relationships between multiple views and
multiple tasks, a naive way to use LDA is as follows. For
each view v in each task t, as described in Section 2.1, we can
compute its corresponding between-class scatter matrix Sv

t,b

and total scatter matrix Sv
t,h. Using the trace ratio form,

the optimization problem can be formulated as:

W v
t
∗ = arg max

Wv
t

⊤Wv
t =Il

tr(W v
t
⊤Sv

t,bW
v
t )

tr(W v
t
⊤Sv

t,hW
v
t )

, (3)

where l is the reduced dimensionality of the trace ratio form,
W v

t ∈ R
dv×l is the transformation matrix for dimensional-

ity reduction for view v in task t, and dv is the number of
features in view v.
When multiple tasks with multiple views are available,

it is better to share knowledge among them to obtain im-
proved results compared to learning them separately. In-
stead of directly sharing some class-dependent model param-
eters among multiple tasks, we propose a multi-task multi-
view discriminant analysis (MAMUDA) method to take ad-
vantage of the common structure representing some char-
acteristics of the application. By solving the optimization
problem, the transformation matrices can be obtained and
a simple nearest neighbor classifier can be used to perform
classification in the transformed lower-dimensional discrim-
inant space.

3.1 Knowledge Shared among Multiple Tasks
and Multiple Views

When multiple related tasks are available, it is better to
learn them together and share some knowledge among them
to get better results. So, based on Eq. (3), combining all the
tasks and all the views’ optimization problems into a unified
form, we have the following optimization problem:

max
{Wv

t },Wv
t

⊤Wv
t =Il

tr(
∑T

t=1

∑V

v=1 W
v
t
⊤Sv

t,bW
v
t )

tr(
∑T

t=1

∑V

v=1 W
v
t
⊤Sv

t,hW
v
t )

(4)

The purpose of the optimization problem is to find the trans-
formation matrices {W v

t } that transform the data from the
original feature space into a discriminant space, where the
data become more separable. Further, to facilitate the in-
formation sharing among multiple tasks, the transforma-
tion process is divided into two steps: (a) the data from
all the tasks are transformed from their corresponding orig-
inal feature space into a common intermediate latent se-
mantic space, which reflects the intrinsic characteristics of
the applications; (b) data from each view of each task are
transformed from the common intermediate latent space into
their corresponding discriminant space. Along this line, the
optimization problem can be explicitly described as:

max
Qv

t ,R
v
t

tr(
∑T

t=1

∑V

v=1 R
v
t
⊤Qv

t
⊤Sv

t,bQ
v
tR

v
t )

tr(
∑T

t=1

∑V

v=1 R
v
t
⊤Qv

t
⊤Sv

t,hQ
v
tR

v
t )

(5)

where

• Qv
tR

v
t = W v

t ∈ R
dv×l is the overall transformation

matrix;

• Qv
t ∈ R

dv×l̄ (Qv
t
⊤Qv

t = Il̄) is the transformation ma-
trix that transforms the v-th view data in task t from
the original feature space into an intermediate latent
semantic space, this intermediate space is shared by
all the views in every task, l̄ is the dimension of the
intermediate latent space;

• Rv
t ∈ R

l̄×l (Rv
t
⊤Rv

t = Il) is the transformation ma-
trix that transforms the data from view v in task t
from the common intermediate latent space into their
corresponding discriminant space.

{Qv
t } are dependent on the views and tasks. Through ma-

trices {Qv
t }, the original data from all the views in every

task, which have different feature representations, are trans-
formed into a common intermediate latent semantic space.
In addition, since the multiple tasks are from the same ap-
plication, there will exist a common structure that is shared
by all the tasks representing some characteristics of the ap-
plication itself. The common structure can be used to fa-
cilitate the learning process of {Rv

t }, by taking advantage
of the common intermediate latent space. Meanwhile, each
task will have some specific characteristics that are only con-
tained in this task. So, multiple views of this task can be
used to jointly learn these task-specific structures. As a
result, the transformation matrix Rv

t can be divided into
two parts: one part is for the common structure shared by
multiple tasks corresponding to the common discriminant
components, while the other part learns the task-specific
discriminant components that is shared by different views
of this task. Different tasks and different views can share
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knowledge through the common structures. The optimiza-
tion problem can be described as:

max
Qv

t ,R,Rt

tr(
∑T

t=1

∑V

v=1 [R,Rt]
⊤Qv

t
⊤Sv

t,bQ
v
t [R,Rt])

tr(
∑T

t=1

∑V

v=1 [R,Rt]
⊤Qv

t
⊤Sv

t,hQ
v
t [R,Rt])

s.t. Qv
t
⊤Qv

t = Il̄, R
⊤R = Il′ , Rt

⊤Rt = Il−l′

(6)

where

• Rv
t = [R,Rt] ∈ R

l̄×l is the transformation matrix as
described above;

• R ∈ R
l̄×l′ is the common transformation matrix shared

by all the views from every task, they can share knowl-
edge through this matrix;

• Rt ∈ R
l̄×(l−l′) is the task-specific transformation ma-

trix, which is shared by all the views in task t, different
views in task t share knowledge through this common
matrix;

It must be noted that the number l′ of shared discrim-
inant components can be adjusted to accommodate to the
relatedness of different tasks. For closely related tasks, we
may use a large l′ even equal to the total discriminant di-
mension l, and for loosely related tasks, we may use a small
l′ even equal to zero which is equivalent to no knowledge
shared between different tasks.

3.2 Classif cation in Discriminant Space
When the transformation matrices {Qv

t } and {Rv
t } are

obtained, it is very straightforward to transform the data
samples from the original feature space into low-dimensional
representation in the discriminant space. Indeed, for each
task, different views of features are available, and we can
obtain the new representation for each view. For the i-th
data sample with view v in task t, denoted by xv

t,i, its new
representation is xv

t,iQ
v
tR

v
t . Rv

t = [R,Rt] are the same for
different views in a specific task, which means different views
are transformed into a same discriminant space. Each view’s
data may have noises. So, average different views’ represen-
tations for each task and obtain the final representation is
a better choice. The final representation can be written
as 1

V

∑V

v=1 x
v
t,iQ

v
tR

v
t . Then, the nearest neighbor classifier

can be used to make predictions in the discriminant feature
space.

3.3 Optimization Procedure
It is difficult to solve the optimization problem (6) with

respect to {Qv
t }, {Rt} and R jointly. In the following, an al-

ternating optimization algorithm is presented. Specifically,
we optimize the objective function with respect to each vari-
able while the other variables are fixed. This procedure is
repeated until convergence.

3.3.1 Computation of R with Fixed {Qv
t } and {Rt}

Note that tr([R,Rt]
⊤Qv

t
⊤Sv

t,bQ
v
t [R,Rt]) = tr(R⊤Qv

t
⊤Sv

t,b

Qv
tR) + tr(Rt

⊤Qv
t
⊤Sv

t,bQ
v
tRt). When {Qv

t } and {Rt} are
fixed, the optimization problem (6) becomes:

max
R

tr
(

R⊤(
∑T

t=1

∑V

v=1 Q
v
t
⊤Sv

t,bQ
v
t )R

)

+ al′

tr
(

R⊤(
∑T

t=1

∑V

v=1 Q
v
t
⊤Sv

t,hQ
v
t )R

)

+ bl′
(7)

where a and b are constants:

a = 1
l′
tr(

∑T

t=1

∑V

v=1 Rt
⊤Qv

t
⊤Sv

t,bQ
v
tRt)

b = 1
l′
tr(

∑T

t=1

∑V

v=1 Rt
⊤Qv

t
⊤Sv

t,hQ
v
tRt) (8)

According to the constraints in Eq.(6), R⊤R = Il′ , so tr(R
⊤R) =

l′. So Eq.(7) can be rewritten as:

max
R

tr
(

R⊤S̄bR
)

tr
(

R⊤S̄hR
) s.t. R⊤R = Il′ (9)

where

S̄b =
∑T

t=1

∑V

v=1 Q
v
t
⊤Sv

t,bQ
v
t + aIl̄

S̄h =
∑T

t=1

∑V

v=1 Q
v
t
⊤Sv

t,hQ
v
t + bIl̄ (10)

The problem in Eq.(9) has the same formulation as the trace
ratio form of LDA, so a similar iterative method as in [23] is
given in Algorithm 1 to solve it. As proved in [23], this algo-
rithm will converge and return the globally optimal solution.

Algorithm 1 Computation of R with Fixed {Qv
t } and {Rt}

Input: S̄b, S̄h

Output: R
Method:
1: Initialize R(0) that satisfies R(0)⊤R(0) = Il′ ;
2: for k = 1 to maxIteNum do
3: Compute the trace ratio value as:

λk = tr(R(k−1)⊤S̄bR
(k−1))/tr(R(k−1)⊤S̄hR

(k−1))

4: Construct the trace difference problem as:

R(k) = arg max
R⊤R=Il′

tr[R⊤(S̄b − λkS̄h)R]

5: Solve the trace difference problem using the eigenvalue
decomposition method, R(k) contains the top l′ eigen-
vectors of (S̄b − λkS̄h);

6: Let Stmp = R(k)R(k)⊤S̄hR
(k)R(k)⊤;

7: Let R(k) be the eigenvector matrix of Stmp corre-
sponding to the top l′ eigenvalues;

8: If ‖R(k) −R(k−1)‖F ≤ ε, then break;
9: end for
10: return R = R(k).

3.3.2 Computation of Rt with Fixed R, {Qv
t } and

{Ri}(i 6= t)
When R, {Qv

t } and {Ri}(i 6= t) are fixed, the optimization
problem (6) becomes:

max
Rt

tr
(

Rt
⊤(

∑V

v=1 Q
v
t
⊤Sv

t,bQ
v
t )Rt

)

+ at(l − l′)

tr
(

Rt
⊤(

∑V

v=1 Q
v
t
⊤Sv

t,hQ
v
t )Rt

)

+ bt(l − l′)
(11)

where at and bt are constants:

at =
1

l−l′

(

tr(
∑T

i=1

∑V

v=1 R
⊤Qv

i
⊤Sv

i,bQ
v
iR)

+ tr(
∑T

i=1,i 6=t

∑V

v=1 Ri
⊤Qv

i
⊤Sv

i,bQ
v
iRi)

)

bt =
1

l−l′

(

tr(
∑T

i=1

∑V

v=1 R
⊤Qv

i
⊤Sv

i,hQ
v
iR)

+ tr(
∑T

i=1,i 6=t

∑V

v=1 Ri
⊤Qv

i
⊤Sv

i,hQ
v
iRi)

)

(12)
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According to the constraints in Eq.(6), Rt
⊤Rt = Il−l′ , so

tr(Rt
⊤Rt) = l − l′. Then, Eq.(11) can be rewritten as:

max
Rt

tr(Rt
⊤S̄t,bRt)

tr(Rt
⊤S̄t,hRt)

s.t. Rt
⊤Rt = Il−l′ (13)

where

S̄t,b =
∑V

v=1 Q
v
t
⊤Sv

t,bQ
v
t + atIl̄

S̄t,h =
∑V

v=1 Q
v
t
⊤Sv

t,hQ
v
t + btIl̄ (14)

The problem in Eq.(13) has the same formulation as the
problem in Eq.(9), so it can be solved by a very similar iter-
ative method as in Algorithm 1. Also, the globally optimal
solution can be obtained.

3.3.3 Computation of Qv
t with Fixed R, {Rt} and

{Qj
i}(i 6= t, j 6= v)

When R, {Rt} and {Qj
i}(i 6= t, j 6= v) are fixed, and

Rv
t = [R,Rt], the optimization problem in Eq. (6) becomes:

max
Qv

t

tr(Rv
t
⊤Qv

t
⊤Sv

t,bQ
v
tR

v
t ) + av

t l

tr(Rv
t
⊤Qv

t
⊤Sv

t,hQ
v
tR

v
t ) + bvt l

(15)

where av
t and bvt are constants:

av
t = 1

l
tr(

∑

(i,j) 6=(t,v) R
j
i

⊤
Qj

i

⊤
Sj

i,bQ
j
iR

j
i )

bvt = 1
l
tr(

∑

(i,j) 6=(t,v) R
j
i

⊤
Qj

i

⊤
Sj

i,hQ
j
iR

j
i ) (16)

According to the constraints in Eq. (6), Qv
t
⊤Qv

t = Il̄ and
Rv

t
⊤Rv

t = Il, then Rv
t
⊤Qv

t
⊤Qv

tR
v
t = Rv

t
⊤Rv

t = Il, so tr(Rv
t
⊤

Qv
t
⊤Qv

tR
v
t ) = l. The optimization problem in Eq. (15) can

be rewritten as:

max
Qv

t

tr(Rv
t
⊤Qv

t
⊤S̄v

t,bQ
v
tR

v
t )

tr(Rv
t
⊤Qv

t
⊤S̄v

t,hQ
v
tR

v
t )

(17)

where

S̄v
t,b = Sv

t,b + av
t Idv , S̄v

t,h = Sv
t,h + bvt Idv . (18)

We further rewrite it as:

max
Qv

t

tr(Qv
t
⊤S̄v

t,bQ
v
tA

v
t )

tr(Qv
t
⊤S̄v

t,hQ
v
tA

v
t )

s.t. Qv
t
⊤Qv

t = Il̄ (19)

where Av
t = Rv

tR
v
t
⊤. This problem has the same formulation

as Eq.(7) in [27], the optimization procedure of it is given in
Algorithm 2.
The solution of the trace difference problem in Step 5 of

Algorithm 2 is given by the Theorem 1 [27]. The algorithm
will return the globally optimal solution of problem (19).

Theorem 1. Let A be a real p× p symmetric matrix and
B be a real q × q positive semidefinite matrix where p > q.
Then

max
W∈Rp×q ,W⊤W=Iq

tr(W⊤AWB) =

q
∑

i=1

λi(A)λi(B),

where λi(A) denotes the i-th largest eigenvalue of matrix
A. The optimal solution satisfies W ∗ = UaUb

⊤Q, where Ua

is the eigenvector matrix of A corresponding to the top q
eigenvalues, Ub is the eigenvector matrix of B, and Q is any
q × q orthogonal matrix.

Algorithm 2 Computation of Qv
t with Fixed R, {Rt} and

{Qj
i}(i,j) 6=(t,v)

Input: S̄v
t,b, S̄

v
t,h and Av

t

Output: Qv
t

Method:

1: Initialize Q
v(0)
t that satisfies Q

v(0)
t

⊤
Q

v(0)
t = Il̄;

2: for k = 1 to maxIteNum do
3: Compute the trace ratio value as:

λk =
tr(Q

v(k−1)
t

⊤
S̄v
t,bQ

v(k−1)
t Av

t )

tr(Q
v(k−1)
t

⊤
S̄v
t,hQ

v(k−1)
t Av

t )

4: Construct the trace difference problem as:

Q
v(k)
t = arg max

Qv
t
⊤Qv

t =Il̄

tr[Qv
t
⊤(S̄v

t,b − λkS̄
v
t,h)Q

v
tA

v
t ]

5: Solve the trace difference problem: Let Q
v(k)
t =

UsUa
⊤, where Us is the eigenvector matrix contains

the top l̄ eigenvectors of (S̄v
t,b − λkS̄

v
t,h) and Ua is the

eigenvector matrix of Av
t ;

6: Let Stmp = Q
v(k)
t Q

v(k)
t

⊤
S̄v
t,hQ

v(k)
t Q

v(k)
t

⊤
;

7: Let Q
v(k)
t be the eigenvector matrix of Stmp corre-

sponding to the top l̄ eigenvalues;

8: If ‖Qv(k)
t −Q

v(k−1)
t ‖F ≤ ε, then break;

9: end for
10: return Qv

t = Q
v(k)
t .

3.4 Dealing with Missing View Data
In many real world problems, multiple tasks do not have

the same set of views. Some tasks may miss some views
of features that are existing in other tasks. It is straightfor-
ward to deal with the problems that have structured missing
views using the methods described in the above sections. If
view v is missing from task t, then the variables concerning
this view in this task will be eliminated in the computation
process. It is obvious that the structured missing views do
not affect the formulation of calculation formula of other
variables, thus the proposed optimization problem in Eq.(6)
can be regarded as a general framework for dealing with
MTMV problems.

4. EXPERIMENTAL RESULTS
In this section, we systematically evaluate the effective-

ness of the proposed Multi-tAsk MUlti-view Discriminant
Analysis (MAMUDA) method. The classification results for
problems with both complete views and missing views are
given to show the performances of MAMUDA.

4.1 Data Preparation
Two applications have multiple tasks with multiple views

are considered in this paper, some statistics of them are
summarized in Table 1, where T1 represents the first task
in a problem, V1, V2 and V3 denotes three different views
of features. Originally, every task in the two applications
has all the views of features. We also consider the missing
view problems by randomly eliminating some views. Miss-
ing views are shown in Table 1 using the symbol ‘×’ and
existing views using ‘

√
’. It can be seen that different tasks

in a problem have different number of classes, i.e., they do
not share the same set of class labels. Thus, they are MTMV
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problems with heterogeneous tasks. The specific character-
istics of these two problems are given below.
Leaves: The leaves data set [11] includes leaves from

one hundred plant species that are divided into 32 differ-
ent genuses, and 16 samples of leaves for each plant species
are presented. For each sample, three views of features are
available, including shape descriptor, fine scale margin and
texture histogram, and each view has 64 features. 4 genuses
that have 4 or more plant species are selected to form 4
tasks, and the aim of the problem is to discriminate differ-
ent species in a genus, which is a multi-class classification
problem. Overall, the problem has 4 tasks with 3 views,
and different tasks have different number of classes. Some
views are randomly eliminated from the data to form its
corresponding missing view problem, as shown in Table 1.
Face: In the face recognition problem, we use 3 face data-

bases: PIE [19], Yale3 and ORL [3]. PIE contains facial
images for 68 persons. We choose the Pose C09 from PIE,
which contains 24 images for each person. Yale contains
165 images for 15 individuals. There are 11 images for each
individual, and each one with different facial expression or
configuration. ORL contains 400 face images of 40 persons,
each having 10 images. These face images have significant
variations in pose and scale. Before the experiment, each
image is converted to gray scale and normalized to two dif-
ferent sizes of 32 × 32 pixels and 28 × 28 pixels, which pro-
vides two different views of features for the image. The face
recognition problem for each database can be seen as a task,
so there are 3 tasks with 2 views in total. Each task cor-
responds to a multi-class classification problem where the
number of classes in each task is equal to the number of
persons in each database. After randomly eliminating some
views, the missing view problem is shown in Table 1.

Table 1: Some Statistics of the Problems

Problem T V1 V2 V3 class # sample #

Leaves

T1
√ √ √

11 176
T2

√ √ √
5 80

T3
√ √ √

4 64
T4

√ √ √
38 608

Leaves
(Missing
View)

T1 × √ √
11 176

T2
√ × √

5 80
T3

√ √ × 4 64
T4

√ √ √
38 608

Face
T1

√ √
NA 68 1632

T2
√ √

NA 15 165
T3

√ √
NA 40 400

Face
(Missing
View)

T1
√ × NA 68 1632

T2
√ √

NA 15 165
T3

√ × NA 40 400

4.2 Experimental Settings

4.2.1 Benchmark Algorithms
Since most previous methods [14, 26, 16] assume that mul-

tiple tasks in a problem should be similar and share the
same set of class labels, and they are formulated for binary
classification problems, they cannot be directly applied to
the application scenarios in Section 4.1. Therefore, we first
compare MAMUDA with several methods that can solve the
MTMV problems with heterogeneous tasks. For all these al-
gorithms, they learn discriminant space representations and

3http://cvc.yale.edu/projects/yalefaces/yalefaces.html

a simple nearest neighbor is used to perform classification in
the lower-dimensional space. These algorithms are described
as follows:

• LDA: Linear Discriminant Analysis (LDA) algorithm
for single task with single view [23]. Each view in each
task is computed separately using LDA, and there is
no knowledge shared among multiple tasks and views.
For each view in each task, we can obtain a new rep-
resentation in discriminant space, and a classification
result can be obtained for each of them.

• MTDA:Multi-task Discriminant Analysis (MTDA) [27]
is a single view multi-task learning algorithm. Here,
the MTMV problem is divided into several MTL prob-
lems, each for a view, and MTDA is used to solve each
of the MTL problems.

• MVDA: Single-task Multi-view Discriminant Analy-
sis (MVDA) method can be seen as a special case of
the MAMUDA method. Here, the MTMV problem is
divided into several MVL problems, one for each task.
MVDA is used to solve each of the MVL problems.
Because all the views of features for a task are trans-
formed into the same discriminant space, the final rep-
resentation of the task can be obtained by averaging
all the views’ representations.

• MAMUDA-s: A simplified version of MAMUDA, by
setting l′ = l in Eq.(6), which means that there are
only common structures shared by multiple tasks and
there are no task-specific structure. This is designed
to show the benefit of using task-specific structures.

Second, previous MTMV algorithms are designed for bi-
nary classification problems. To further compare our algo-
rithm with the previous MTMV algorithms, we need to con-
vert the multi-class classification problem into a set of binary
classification problems using the one-against-all method for
previous algorithms. Two MTMV algorithms are used:

• IteM2: It is a transductive MTMV algorithm for bi-
nary classification problems [14].

• regMVMT: It is an inductive binary classification
algorithm, which assumes all tasks should be similar
to achieve good performance [26].

4.2.2 Evaluation Metrics
In the experiments, different numbers of samples are ran-

domly selected for each class to investigate the effect of vary-
ing the size of training set on classification performances.
For each configuration, we perform 10 random trials and
the average error rates are reported. The average error rate
is the percentage of wrongly classified samples among all the
test samples from all tasks.

4.3 Learning Results for Problems with Com-
plete Views

For the Leaves problem, we randomly select n ∈ {2, 3, 4, 5}
samples for each class as training set and the rest as the test
set. Here we do not set n = 1, since in this case there is only
one labeled sample in each class, the between-class scatter
matrix is equal to the total scatter matrix and we cannot
build a meaningful optimization problem. The parameters
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Figure 4: Experimental Results for the Leaves Problem
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Figure 5: Experimental Results for the Face Problem

used are: l̄ = 50, l = 100 and l′ = 50. Each experiment is re-
peated 10 times, and the average error rates of all the tasks
are shown in Figure 4, where for LDA algorithm the average
error rates of the three views from multiple tasks are given.
For MTDA algorithm, each view’s results are given sepa-
rately, and MTDA-i represents the results of MTDA algo-
rithm using the i-th view data. It can be seen that there are
great distinctions on different views’s ability for classifica-
tion using MTDA algorithm. MAMUDA obtains the best re-
sults for all the different numbers of training samples. LDA
algorithm does not perform well as it does not share knowl-
edge among multiple tasks or multiple views. MAMUDA is
better than MTDA and MVDA, which demonstrates MA-
MUDA can benefit from sharing knowledge among both
multiple tasks and multiple views. MAMUDA is also better
than MAMUDA-s algorithm, which shows that MAMUDA
can take advantage of the task-specific structures to obtain
additional improvement.
For the Face problem, we also randomly select n ∈ {2, 3, 4, 5}

samples for each class as training set and the rest as the
test set. The parameters used are: l̄ = 300, l = 300 and
l′ = 200. Each experiment is repeated 10 times, the aver-
age error rates of all the tasks are shown in Figure 5. The
results are very similar to those of Leaves. LDA algorithm
is the worst among all the algorithms. MAMUDA obtains
the best results for all the different numbers of training sam-
ples. MAMUDA is also better than MAMUDA-s algorithm,
which does not consider the task-specific information.

4.4 Learning Results for Problems with Miss-
ing Views

For both Leaves and Face problems with missing views,
as shown in Table 1, we randomly select n ∈ {2, 3, 4, 5}
samples for each class as the training data and the rest as
the test data. Each experiment is repeated 10 times, the
average error rates of all the tasks are shown in Figure 6
and 7. Again, MAMUDA obtains the best results for all
the different numbers of training samples. This shows that
MAMUDA can solve the problems with missing views.
We also compared the results of MAMUDA algorithm for

problems with missing views and complete views, which are
shown in Figure 8. It can be seen that, for both Leaves
Problem and Face problem, when some views are missing,
the results become worse than the problems with complete
views. So, MAMUDA can take advantage of multiple views
and leverage them to obtain good results.
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Figure 8: Comparison of Results from Missing
Views and Complete Views Problems

4.5 A Comparison with existing MTMV algo-
rithms

Existing MTMV algorithms [14, 26] are designed for bi-
nary classification problems. To compare with them, we
need to convert the multi-class problems into binary classi-
fication problems. As each task in our problems is a multi-
class problem, for each class, a new binary classification
task is constructed according to the one-against-all method.
Thus, task 1 in the Leaves problems is converted into 11 bi-
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Figure 7: Experimental Results for the Face Problem with Missing Views

nary tasks and the Leaves problem contains 58 binary clas-
sification tasks in total. The average error rate for each
algorithm is shown in Table 2. It must be noted that, for
regMVMT and IteM2 algorithms, the results shown in the
table are the error rates of the transformed binary classifica-
tion problems. The results need to be mapped to the results
of multi-class problems, which will become much worse as
the binary results is already too poor. It is observed that,
MAMUDA substantially outperforms existing MTMV algo-
rithms. Similarly, using this method, the Face problem can
be converted into a new problem with 123 binary classifica-
tion tasks. Unfortunately, regMVMT algorithm [26] cannot
solve this problem due to this algorithm’s high time com-
plexity and space complexity4. Thus only IteM2 is compared
with our algorithm, which also does not obtain acceptable
results for our heterogeneous problems.

Table 2: Classification Error Rates for Previous
MTMV Algorithms (Reesults of the Transformed
Binary Problem)

training sample # 2 3 4 5

Leaves
regMVMT 0.51 0.49 0.46 0.54

IteM2 0.44 0.43 0.40 0.40

Face IteM2 0.50 0.49 0.47 0.46

It can be seen that MAMUDA achieves the best results,
and both the state-of-the-art MTMV algorithms can not
perform well for our problems. We conjecture that there are
two reasons: (1) They need to transform the multi-class
problem into a number of binary classification problems,
which may lead to the class-unbalance and degrade the per-
formance. (2) They do not consider the special requirement
that the tasks are heterogeneous. Indeed, they are not very
suitable for the problems considered in this paper, as they
assume all the tasks are similar.

4 In fact, the authors of regMVMT have explicitly stated
in their paper that “Due to the limit of the matrix size in
most computer systems, our algorithm can only handle up to
tens of tasks, and learning problems with hundreds of tasks
or more are hence beyond the scope of this paper.”

4.6 Parameter Sensitivity
To check the effect of varying the number of dimensions l̄

of the common intermediate latent space, the total number
of discriminant dimensions l and the number of shared dis-
criminant dimensions l′ in Eq.(6), we vary them in a wide
range of values.

First, for Leaves data set, we vary l̄ from 10 to 60, and
correspondingly set l = l̄ and l′ = 1

2
l̄, the results are given

in Fig.9(a). We can find that when the value of l̄ is larger
than 50, the results are stable. So the default value of l̄ is
set as 50 for Leaves problem. Similarly, for Face data set,
we vary l̄ from 200 to 600, the results are shown in Fig.9(b).
It can be seen that the results are good when l̄ are not too
small or too large. So, l̄ need to be tuned by the users to
obtain good result. Also, this parameter is not difficult to
be set, as the results are good in a wide range of parameter
settings.

Then, while l̄ are fixed with the best parameter, we vary l
from 10 to 100 and correspondingly set l′ = 1

2
l. The results

for Leaves problem are given in Fig.9(c). Similarly, the re-
sults for Face problem with different l values are shown in
Fig.9(d). It can be observed that, for both the two data sets,
the results are relatively stable with not too small values of
l. Therefore, the default value of l for Leaves problem is set
as 100 and 300 for Face problem.

Finally, we fix l̄ = 50 and l = 100, and vary l′ from 0 to
50 for Leaves problem. The results are shown in Fig.9(e).
Similarly, while other parameters are fixed, Face problem’s
results are in Fig.9(f). For both of the two problems, the
results are stable with not too small l′ values. So, we set
l′ = 50 for Leaves problem and l′ = 200 for Face problem.

5. RELATEDWORKS
Generally speaking, related works can be grouped into the

following three categories.
The first category includes the studies of Multi-task learn-

ing (MTL), which conducts multiple related learning tasks
simultaneously so that the label information in one task
can be used for other tasks. The earliest MTL method
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Figure 9: Prediction Accuracy with respect to Dif-
ferent Dimension Settings

[5] learns a shared hidden layer representation for different
tasks. Multi-task feature learning learns a low-dimensional
representation which is shared across a set of multiple re-
lated tasks [2, 15]. The methods to learn predictive struc-
tures on hypothesis spaces from multiple learning tasks are
also proposed [1, 6]. These methods can learn some shared
features or shared structures between different task, but they
based on the original feature and can only use information
from the same view data, which means they cannot share
information among different views. Supposing that all the
tasks are similar, a regularization formulation is proposed
for MTL [9]. MTL can be modeled by stochastic process
methods, such as [22, 25]. To deal with outlier tasks, a ro-
bust multi-task learning algorithm is proposed [7]. These
methods share knowledge by placing a common prior on
the model parameters of each task in hierarchical Bayesian
models and explicitly share some model parameters or model
structure among tasks, which requires that multiple tasks in
the problem are similar and have the same set of class labels.
So, they cannot be used for problems with heterogeneous
tasks. MTDA algorithm [27] is a single view multi-task
learning algorithm that can deal with learning tasks with
different data representations. It can be seen as a special
case of our MAMUDA method, which does not share infor-
mation among different views of a same task. Also, MTDA
only uses the shared structure among tasks and does not
consider the task-specific structures.
The second category includes the works on Multi-view

Learning (MVL). The basic idea of MVL is to make use of
the consistency among different views to achieve better per-

formance. One of the earliest works on multi-view learning
is co-training algorithm [4], which uses one view’s predic-
tor to enlarge the training set for other views. Nigam and
Ghani compared co-training, EM and co-EM methods, and
showed that co-EM algorithm is the best among the three
approaches [18]. Some improvements of co-training algo-
rithm are also proposed [17, 24]. Other methods are based
on co-regularization framework. Sindhwani et al. [20] pro-
posed a learning framework for multi-view regularization.
SVM-2K [10] is a method which uses kernels for two views
learning. Sindhwani and Rosenberg [21] constructed a single
Reproducing Kernel Hilbert Spaces (RKHSs) with a data-
dependent “co-regularization” norm that reduces MVL to
standard supervised learning. Chen et al. [8] presented a
large-margin learning framework to discover a predictive la-
tent subspace representation shared by multiple views. All
these methods are designed for single task learning.

Finally, the third category includes the efforts on multi-
task multi-view (MTMV) learning with homogeneous tasks.
He and Lawrence [14] proposed a graph-based framework
which takes full advantage of information among multiple
tasks and multiple views, and an iterative algorithm (IteM2)
was developed to optimize the model. However, multiple
tasks share information by directly sharing some class-depen-
dent model parameters. This requires multiple tasks have
the same class label set and the classes in different tasks
have an one-to-one relationship. So, it can not solve prob-
lems with heterogeneous tasks. Also, it can only deal with
problems with nonnegative feature values. regMVMT [26]
uses co-regularization to obtain functions that are consis-
tent with each other on the unlabeled samples for different
views. Across different tasks, additional regularization func-
tions are utilized to ensure the learned functions are similar
for multiple tasks, which implies that it can not solve prob-
lems with heterogeneous tasks. CSL-MTMV [16] is a shared
structure learning framework, which can learn shared pre-
dictive structures on common views from multiple related
tasks, and use the consistency among different views to im-
prove the performance. Also, it is a binary classification
algorithm and is not convenient for multi-class problems.

6. CONCLUSIONS AND FUTUREWORK
In this paper, we formulated a new type of multi-task

multi-view (MTMV) learning problem, i.e., MTMV with
heterogeneous tasks, and a Multi-tAsk MUlti-view Discrim-
inant Analysis (MAMUDA) method is proposed to solve it.
In MAMUDA, both the shared structure that represents the
characteristics of the application and the task-specific struc-
tures can be combined into a unified formulation to facilitate
the learning process. Furthermore, an alternating optimiza-
tion algorithm is developed to solve the problem. Finally,
experiments on several real world problems, with both com-
plete views and missing views, demonstrate the effectiveness
of the proposed method.

To solve the MTMV problem, we ingeniously extended
LDA methods to the multi-task multi-view setting, and the
framework is very general and useful. It is worth mentioning
that many other dimension reduction models (e.g., canonical
correlation analysis model [13]) can also be optional for our
general framework, which will be further investigated in the
future.
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