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Abstract
We propose a boosting method for conversational
models to generate more human-like dialogs. In our
method, we consider the existing conversational
models as weak generators and apply the Adaboost
to update those models. However, conventional
Adaboost cannot be directly applied on conversa-
tional models, since conventional Adaboost can-
not adaptively adjust the weight on the instance for
subsequent learning. This results from the conven-
tional methods based on the simple comparison be-
tween the true output y (to an input x) and its cor-
responding predicted output y′, cannot effectively
evaluate the learning performance on x. To address
this issue, we develop the Adaboost with Auto-
Evaluation (called AwE). In AwE, an auto-evaluator
is proposed to evaluate the predicted results, which
makes Adaboost applicable to conversational mod-
els. Furthermore, we present the theoretical anal-
ysis that the training error drops exponentially fast
only if certain assumption over the proposed auto-
evaluator holds. Finally, we empirically show that
AwE visibly boosts the performance of existing sin-
gle conversational models and also outperforms the
other ensemble methods for conversational models.

1 Introduction
In the light of these advances, recent years witness an in-
creasing research interests in applying the end-to-end neu-
ral methods to conversational models [Shang et al., 2015;
Sordoni et al., 2015; Serban et al., 2016; 2017]. These pre-
vious studies aim to improve conversational models. First,
more sophisticated neural architectures are proposed, such as
attention mechanism [Bahdanau et al., 2015] and hierarchi-
cal neural network [Serban et al., 2016], are proposed to de-
pict the mapping between input and output more carefully.
Second, some other learning methods are applied to updated
conversational models. For example, reinforcement learn-
ing [Li et al., 2016], adversarial learning [Li et al., 2017]
and adaptation methods [Li et al., 2018] are used to modify
conversational models. However, two problems of conversa-

tional models are still not solved completely. Firstly, exist-
ing conversational models may generate responses which are
not suitable to input posts in any scenarios. Secondly, these
models tend to generate several highly generic responses, for
example, “I don’t know”.

With the above two problems, the performance of existing
conversational models are unsatisfactory. Here, they can be
seen as weak generators. To update weak generators, we ex-
tend the ensemble method Adaboost for conversational mod-
els. Adaboost [Freund and Schapire, 1997] is an effective
ensemble framework to improve the performance of super-
vised learning (originally for single-variable output). The key
to Adaboost is its adaptive feature where subsequent weak
learners are tweaked in favor of those instances on which
previous weak-performance learners . Thus, it needs an au-
tomatic method to evaluate the learning performance on each
instance.

However, for conversational models the automatic evalua-
tion is not trivial. Consider the dialog generation task. Let
y and y′ be the true and predicted response to an input post
x. To be a good response to x, y′ is not required to be ex-
actly equal to y, but is only required to be grammatically cor-
rect and semantically relevant to input x. Thus, for conversa-
tional models, the evaluation of the predicted responses is not
trivial, therefore conventional Adaboost cannot be applied on
conversational models directly.

In this paper, we study the extension of Adaboost for con-
versational models. To this end, we develop the framework
of Adaboost with Auto-Evaluation (called AwE). In AwE,
an auto-evaluator is proposed to evaluate predicted results.
Specifically, motivated by the discriminator in Generative
Adversarial Nets [Goodfellow et al., 2014], a classifier is
trained to distinguish the true and predicted responses for the
input posts. Then, we believe that the conversational model
performs well on x only if the classifier makes a false-positive
error on x. Thus, this classifier can be used as an auto-
evaluator to adjust the weights on instance for the next-round
learning in Adaboost. Furthermore, we theoretically analyze
the training error of AwE. The training error drops exponen-
tially fast only if certain assumption over the proposed auto-
evaluator holds. Finally, we do some empirical experiments
to evaluate our method. We demonstrate that AwE visibly
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(a) Epoch module (b) Whole process

Figure 1: Illustration of Adaboost with Auto-Evaluation: (a) Epoch module of AwE, where AE is the automatic-evaluator, CM is the con-
versational model, w(k) is the weight set of instances, g(k) is the trained CM, D is the input dataset, D(k)

g is the generated dataset predicted
by the trained CM, α(k) is the weight of g(k) which is related to the error of g(k), f (k) (xi) represents the performance of g(k) on xi, here
f (k) (xi) = 1 means g(k) performs well on xi, and vice versa. (b) Whole process of AwE, where ge is the ensemble model.

boosts the performance of single model and also outperforms
the other ensemble methods for conversational models.

2 Related Work
In the light of end-to-end neural system of statistical ma-
chine translation (SMT) [Yin et al., 2016; Cho et al., 2014;
Bahdanau et al., 2015], researches on neural conversational
models have made some progress. Shang et al. [2015] intro-
duced three types of encoding schemes as extensions of atten-
tion method. They found that hybrid scheme performs better
than the other two schemes in generating responses. Instead
of focusing on one-round dialog, Serban et al. [2016] devised
a hierarchical neural network. They encoded a sequence of
words into an utterance vector and used the utterance vec-
tor of previous sentences as context information. Then they
[2017] extended the hierarchical neural network by adding a
parallel RNN encoder, which encodes the high-level coarse
tokens, into the previous framework. Another way to im-
prove conversational models is to solve the high frequency
responses problem and increase the response diversity. Jiwei
et al. [2016] brought reinforcement learning into the dialog
system to overcome the high frequency responses challenge.

Adaboost was proposed by Freund and Schapire [1997].
It was applied to improve performance of word recognition
in handwritten documents [Schwenk and Bengio, 1998], face
recognition [Sun et al., 2012] . It was also used to update
structured learning with explicit evaluation labels [Cortes et
al., 2014]. All of those tasks can be automatically evaluated
by simple comparison between the true output y (to an in-
put x) and its corresponding predicted output y′. However,
to our best knowledge, Adaboost has not been employed on
conversational models.

We propose AwE which employs Adaboost to update con-
versational models. Our method designs an auto-evaluator
inspired by the discriminator of Generative Adversarial Nets
(GAN) [Goodfellow et al., 2014]. GAN and its variants, such
as LAPGAN [Denton et al., 2015] and DCGAN [Radford et
al., 2015], have made great progress on image generation.

GAN consists of two components: a generator and a discrim-
inator. The generator generates images which are similar to
real images. And the discriminator differentiates real images
and fake images which are generated by the generator. For
application of GAN on natural language processing (NLP),
Lantao et al. [2017] proposed SeqGAN to generate text.

3 Adaboost with Auto-Evaluation
In this section, we introduce Adaboost with Auto-Evaluation
(AwE). Firstly, we describe the training process of AwE. As
shown in Fig.1, the main training process of AwE is to train
several models iteratively. We regard every training epoch
as an epoch module and the framework of our method is to
combine those modules. Then we propose a Weighted Beam
Search method as the inference method for AwE. Finally, we
prove an upper bound of the training error when certain as-
sumption on the auto-evaluators holds.

3.1 Training Process
The epoch module is shown in Fig.1(a). It has two inputs.
The first input is a datasetD = (xi,yi)

N
i=1, where xi is input

post, yi is output response, N is the number of input-output
pairs in the dataset. The other input is a weight set w(k−1).
w(k−1) is leveraged to control the attentions of conversational
model (CM) on input-output pairs. A CM mainly focuses on
the input-output pairs where the CM of previous epoch mod-
ule obtains unsatisfactory performance. In addition, we ini-
tialize all weights equally, which means every pair is equally
important at the beginning.

There are two main models in the epoch module: conver-
sational model (CM) and auto-evaluation (AE). Our method
can be easily used on the neural conversational models which
are based on sequence-to-sequence format, such as [Cho et
al., 2014; Sutskever et al., 2014; Bahdanau et al., 2015;
Serban et al., 2016; Shang et al., 2015]. Here, the method
in [Cho et al., 2014] is adopted. We can utilize w(k−1) and
D to train CM. Using the trained model, we then generate
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Algorithm 1 AUTO-EVALUATION ADABOOST

Require:
Dataset, D = (xi,yi)

N
i=1, where xi is input, yi is output, N is

the number of input-output pairs
Conversational model, CM
Auto-evaluator, AE
Iteration number, K

Ensure: Ensemble model ge(x,y)
1: w(0) ←

(
1
N
, . . . , 1

N

)
//w is the set of weights

2: for k = 1 to K do
3: g(k) ← CM

(
D,w(k−1)

)
4: e(k) ← AE

({
D,D(k)

g

})
// D(k)

g is the generated dataset predicted by the trained CM

5: f (k) (xi)←

{
1 , e(k) (xi,y

′
i) = 1

−1 , e(k) (xi,y
′
i) = −1

, ∀i

6: ε(k) =
∑N

i=1 w
(k−1)
i I

[
f (k) (xi) 6= 1

]
,

where I (a) =

{
1 , if a is true
0 , if a is false

7: α(k) ← 1
2
log
(

1−ε(k)

ε(k)

)
8: ∀i, w(k)

i ← 1
Z
w

(k−1)
i exp

(
−α(k)f (k) (xi)

)
.

//Z is the sum of w(k)
i that are used for normalization

9: end for
10: return ge (x,y) =

∑k=K
k=1 α(k)g(k) (x,y)

a new dataset with inputs in D, and define this dataset as
Dg = (xi,y

′
i)

N
i=1, where y′i is the output of xi.

For AE, AwE employs an auto-evaluator to evaluate out-
puts generated by CM. All evaluation methods which can
effectively evaluate results of conversational models can be
utilized in our method. Here, we employ a learned evalua-
tor which is motivated by GAN. The AE that we apply uses
Recurrent Neural Network (RNN) encoder with Gated Re-
current Unit (GRU) to encode the input and output. Then
the last hidden vectors of input and output are combined as
a hidden vector of each input-output pair. Finally, we apply
Softmax for classification. For the training data of the AE,
both D and Dg are used. All input-output pairs in D are la-
beled by 1 and all the pairs in Dg are labeled by -1. Then
we use the labeled input-output pairs in D and Dg to train
the AE. The trained auto-evaluator e(k) can help us to judge
if the CM performs well on every input xi in the dataset. If
e(k) (xi,y

′
i) = 1, then y′i can be regraded as real output and

is suitable to xi, which means the CM performs satisfacto-
rily on xi. Whereas, if e(k) (xi,y

′
i) = −1, then y′i can be

regraded as fake output, which means the CM performs un-
satisfactorily on xi and (xi,yi) are not learned well by CM.
We define a function f (k) (xi) to represents the performance
of CM on xi, where f (k) (xi) = 1 means the CM performs
well on xi, and vice versa. Thus the relation of f (k) (xi) and
e(k) (xi,y

′
i) can be represented by the step 5 in Algorithm 1.

After getting f (k) (xi) for all xi ∈ D, we can calculate the
weight of the trained CM α(k) and update w(k) according to
the rules of step from 6 to 8 in the Algorithm 1. Then we

obtain three outputs of the epoch module: new weights set
w(k), the trained CM g(k) and α(k).

The whole process of training AwE is shown in Fig.1(b). In
the whole process, we combine several epoch modules. w(k)

can be regarded as the connector between two epoch modules.
w(k) is output by the k-th epoch module and is the input of the
(k + 1)-th epoch module. It stores the information of which
pairs are unsatisfactorily learned and guides the training of
CM in the (k + 1)-th epoch module.

Except for w(k), the outputs of epoch modules are required
by the ensemble process. We combine g(k) by adding them
up according to their own weights α(k), which is shown in
step 10 of Algorithm 1. α(k) is inversely proportional to total
error of g(k). That means g(k) whose error is lower plays a
more important role in the ensemble model.

3.2 Weighted Beam Search for Sequence
Generation

In the inference process, we need to generate an output y′ ={
y(1), y(2), . . . , y(L)

}
(where L is the length of the output)

for a given input x. Specifically, we select the y′ by maxi-
mizing probability with ge:

y′ = argmax
y

ge (x,y)

= argmax
y

K∑
k=1

α(k)g(k) (x,y)

= argmax
y

K∑
k=1

α(k)p(k) (y|x)

(1)

Using the above equation, we must traverse all plausible out-
puts. This method is time-consuming. To reduce the time-
complexity, we propose the Weighted Beam Search method
which generates the output word by word. Specially, when
generating the first words, we obtain the conditional proba-
bility of first words using:

p
(
y(1)|x

)
=

K∑
k=1

α(k)p(k)
(
y(1)|x

)
(2)

The first words of outputs can be selected according to
p
(
y(1)|x

)
. M (beam search size) words with highest

p
(
y(1)|x

)
are selected as possible words. In the step of gen-

erating sub-sequence
{
y(1), . . . , y(n)

}
(n > 1), Weighted

Beam Search firstly uses the added conditional probability as
the ensemble conditional probability:

p
(
y(n)|x, y(1), . . . , y(n−1)

)
=

K∑
k=1

α(k)p(k)
(
y(n)|x, y(1), . . . , y(n−1)

) (3)

Secondly, with p
(
y(1), . . . , y(n−1)|x

)
from the previous step

of generating
{
y(1), . . . , y(n−1)

}
, we can get the conditional
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probability of sub-sequence p
(
y(1), . . . , y(n)|x

)
using:

p
(
y(1), . . . , y(n)|x

)
= p

(
y(n)|x, y(1), . . . , y(n−1)

)
· p
(
y(1), . . . , y(n−1)|x

) (4)

Then we can select M possible sub-sequences{
y(1), . . . , y(n)

}
with highest conditional probability

p
(
y(1), . . . , y(n)|x

)
.

3.3 Analyzing the Training Error of AwE
Here, we use y′i to represent the output generated by the en-
semble model and e (xi,y

′
i) to represent the evaluation re-

sult of y′i to xi. If e (xi,y
′
i) = 1, then y′i is suitable to xi

and vice-versa. Thus, 1
N

∑N
i=1 I [e (xi,y

′
i) 6= 1] can repre-

sent the training error of AwE. Next, we propose some as-
sumptions on the auto-evaluator and then propose an upper
bound to this training error based on this assumption.

Assumption 1.

e (xi,y
′
i) = sgn

(
K∑

k=1

α(k)e(k) (xi,y
′
i)

)
(5)

The assumption actually requires the evaluation on y′
i (pre-

dicted by the ensemble method) to be the linear sum of the
evaluation results from the K individual auto-evaluators. We
argue that this assumption is reasonable since each individ-
ual auto-evaluator e(k) contributes the final evaluation with
the weight α(k). With this assumption we have the following
theorem for the upper bound of training error for AwE.

Theorem 1. The upper error bound of AwE on training data
is as follows:

1

N

N∑
i=1

I [e (xi,y
′
i) 6= 1] ≤ exp

(
−2

K∑
k=1

γk
2

)
(6)

where γk = 1
2 − ε

(k).

Proof. First, let

f (xi) = sgn

(
K∑

k=1

α(k)f (k) (xi)

)
(7)

Then, based on the theorem on the upper error bound for Ad-
aboost [Freund and Schapire, 1997] we have

1

N

N∑
i=1

I [f (xi) 6= 1] ≤ exp

(
−2

K∑
k=1

γk
2

)
(8)

Then, to prove Theorem 1, we need to prove

1

N

N∑
i=1

I [e (xi,y
′
i) 6= 1] =

1

N

N∑
i=1

I [f (xi) 6= 1] (9)

The above Eq. 9 can be proved as follows:

Training posts 536,639
Training responses 542,083
Training pairs 773,315

Validation posts 20,000
Validation responses 25,086
Validation pairs 28,949

Test posts 1000

Table 1: Some statistics of the dataset

1

N

N∑
i=1

I [e (xi,y
′
i) 6= 1]

=
1

N

N∑
i=1

I

[
sgn

(
K∑

k=1

α(k)e(k) (xi,y
′
i)

)
6= 1

]
(10)

=
1

N

N∑
i=1

I

[
sgn

(
K∑

k=1

α(k)f (k) (xi)

)
6= 1

]
(11)

=
1

N

N∑
i=1

I [f (xi) 6= 1] (12)

where Eq. 10 follows from Assumption 1, Eq. 11 follows
from Step 5 in Algorithm 1 and Eq. 12 follows from Eq. 7.

From Theorem 1, we get the conclusion that with the
growth of K, the upper error bound of the training data de-
creases exponentially. In other words, we can increase K
to improve the performance of the ensemble method over
the training data. However, when K becomes too large, the
model may overfit the training data. Thus, finding a suitable
value of K is important. In this paper, we select the value of
K according to performance of AwE on validation dataset.

4 Experiments
We examine the performance of our method on dialog gen-
eration tasks and compare with three benchmarks in exper-
iments. Most of conversational models based on sequence-
to-sequence format can be used in our method. For conve-
nience, we choose RNN Encoder-Decoder with GRU [Cho et
al., 2014] as the conversational model in our experiments. For
fair comparison, all the benchmarks are based on the RNN
Encoder-Decoder with GRU.

4.1 Dataset
We collect nearly 14 million post-response pairs from Ten-
cent Weibo . Removing spams and advertisements from that
dataset, there are only 803,716 high-quality post-response
pairs retained. We randomly divide this data into training,
validation and test set with no overlap posts. In other words,
we insure that there are no posts appearing in two different
sets. Table 1 shows some statistics of the dataset used in this
paper. Then we build the dictionary with Chinese characters
and high frequency Chinese words. The dictionary consists
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Table 2: Human evaluation examples

Methods BLEU
Seq2Seq 3.85

Maximum 3.92
Bagging 3.86

AwE 4.27

Table 3: BLEU of AwE and three benchmarks

Methods Proportion
Seq2Seq 21.1%

Maximum 27.8%
Bagging 27.1%

AwE 19.8%

Table 4: Proportion of high frequency responses

of 17,395 items and we use these items to split the sentence
of post-response pairs.

4.2 Benchmarks
We use three benchmarks in this paper which are all based on
RNN Encoder-Decoder with GRU.
• Seq2Seq: This method is RNN Encoder-Decoder with

GRU [Cho et al., 2014].
• Maximum: It is an ensemble method which is similar to

the ensemble method in [Zhou et al., 2017]. It combines
the results of several generators by the way of selecting
results with maximum scores.
• Bagging: This ensemble method is widely used in read-

ing comprehension and question answering [Wang et
al., 2017a; 2017b; Seo et al., 2017]. It is an ensem-
ble method which combines several different models by
averaging scores of those models and choosing the re-
sponse with highest average score.

4.3 Experimental Details
The experimental details in this paper are as follows:
• We use 1-layer GRU with 512 cells for both the encoder

and the decoder.
• We use different word embeddings for the encoder and

the decoder as suggested in [Shang et al., 2015]. Both
embedding dimensions are set to 128.

• We initialize all parameters with the uniform distribution
between -0.1 and 0.1. And We set the minibatch size to
256.
• We use beam search method to do the generation and we

set beam size to 10.

5 Results and Analysis
We use two evaluation methods to compare the performance
between our method and three benchmarks: BLEU and hu-
man evaluation method [Shang et al., 2015].

5.1 Human Evaluation
We use human evaluation method to evaluate our models and
three benchmarks referring to [Shang et al., 2015]. To pre-
vent human annotation bias, we mix generated results of all
models up and let four labelers score the same result set in-
dependently. All the labelers come from a professional com-
pany and have at least one-year experience of labeling dialog
system. The human evaluation examples are shown in Table
2. The score ranges from 0 to 2 indicating bad, normal and
good respectively.
• Bad(0): The generated response is not semantically rel-

evant to the post or there are some grammatical mistakes
in the response.
• Normal(1): The generated response has no grammatical

mistakes and is semantically relevant to the post. But it
is a high frequency response or it can only be suitable to
the post in some specific scenarios.
• Good(2): The generated response is free of mistakes and

semantically relevant to the post. Additionally, it is a
very satisfying response to the post.

5.2 Results
Table 3 shows the BLEU (BLEU-4) of our methods and three
benchmarks. We can find that AwE outperforms three bench-
marks. Also we can see that there is nearly no difference
among three benchmarks. The main reason we conjecture is
that the two ensemble benchmarks do not generate more sim-
ilar responses to the reference responses than single model.
Instead, they generate more high frequency responses, which
is shown in Table 4. High frequency responses are the re-
sponses that appear many times in the dataset and can re-
sponse to many different posts, such as “I don’t know”, “I
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Methods Mean Score Good(2) Normal(1) Bad(0) Agreement
Seq2Seq 0.903 14.1% 62.2% 23.7% 0.480

Maximum 0.905 11.7% 67.1% 21.2% 0.505
Bagging 0.906 12.1% 66.4% 21.5% 0.436

AwE 0.989 15.2% 68.5% 16.3% 0.412

Table 5: Human evaluation results

Table 6: Responses generated by several methods

don’t know what you are talking about” , “Such a simple
question”. Because nearly all top 100 responses of training
dataset are high frequency responses, we use those responses
to represent high frequency responses in Table 4. But, we
must make it clear that high frequency responses are not lim-
ited to top 100 responses of training dataset.

The human evaluation results of experiments are shown in
Table 5. We use agreement [Fleiss and others, 1971] to mea-
sure the inter-rater consistency. The agreement is represented
by Fleiss’ kappa which ranges from 0 to 1. All the agreement
of methods in Table 5 range from 0.4 to 0.6, which means all
the results are in the same level of agreement that is “Moder-
ate agreement” [Landis and Koch, 1977].

From Table 5, we find that two ensemble benchmarks have
lower ratio of bad responses than Seq2Seq. However they
perform worse than Seq2Seq on the ratio of good responses.
The main reason is that those two methods generate more
high frequency responses, which are semantically relevant to
the posts but are not good.

Compared to benchmarks, AwE is superior to them. As for
the comparison with Seq2Seq, our method generates more
normal and good responses. This may result from two rea-
sons. Firstly, AwE is an ensemble method, which leads
to it generating more semantically relevant and grammati-
cally correct responses. Secondly, the auto-evaluator in AwE
helps our method to obtain more good responses. The auto-
evaluator is trained by generated pairs and real pairs whose la-
bels are different. It assigns f (k) (xi) = −1 if y′i is high fre-
quency and yi is not. Thus (xi,yi) will obtain high weights
in the next epoch, if y′

i is high frequency and yi is not. By
this way, our method can get more information from low
frequency and semantically relevant responses and reduce
the probability of high frequency responses being generated,

which leads to more good responses being generated. From
Table 4, we can also see that our method generates less high
frequency responses. In addition, two ensemble benchmarks
do not have the auto-evaluator so that our method generates
more good responses than them.

5.3 Case Study
Table 6 shows some responses generated by three bench-
marks and AwE. From the first and the second examples,
we can see that Seq2Seq generate semantically irrelevant re-
sponses to posts or responses with grammatical mistakes,
whereas the three ensemble methods generate some seman-
tically relevant responses without mistakes. This, as we con-
jecture, is caused by ensemble methods can always get better
performance than single methods. From the third and fourth
examples, we observe that AwE generate more satisfying re-
sponses than Maximum and Bagging. This is because, al-
though the responses generated by Maximum and Bagging
are semantically relevant to posts, they are high frequency.
Instead, our method will decrease the weight of instances
with high frequency responses in the training process so that
our method generates less high frequency and more satisfying
responses.

6 Conclusion
In this study, we propose Adaboost with Auto-Evaluation
(called AwE) to improve performance of existing conver-
sational models. Specifically, our method uses an auto-
evaluator to evaluate the output generated by the conversa-
tional models so that the weights on the instances can be
adjusted adaptively. We also theoretically analyze the upper
bound of the training error for AwE when certain assumption
on the auto-evaluators holds. From empirical experiments,
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we conclude that AwE visibly outperforms existing conversa-
tional models and other ensemble methods.
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