
Exploiting User Actions for App Recommendations

Kai Shu∗, Suhang Wang∗, Jiliang Tang†, Yi Chang‡, Ping Luo§, and Huan Liu∗
∗Arizona State University, {kai.shu, suhang.wang, huan.liu}@asu.edu

†Michigan State University, tangjili@msu.edu
‡Jilin University, yichang@acm.org

§Chinese Academy of Sciences, luop@ict.ac.cn

Abstract—Mobile Applications (or Apps) are becoming more
and more popular in recent years, which has attracted increas-
ing attention on mobile App recommendations. The majority
of existing App recommendation algorithms focus on mining
App functionality or user usage data for discovering user
preferences; while actions taken by a user when he/she decides
to download an App or not are ignored. In realistic scenarios, a
user will first view the description of the App and then decide
if he/she wants to download it or not. The actions such as
viewing or downloading provide rich information about users’
preferences and tastes for Apps, which have great potentials
to advance App recommendations. However, the work on
exploring action data for App recommendations is rather
limited. Therefore, in this paper we study the novel problem of
exploiting user actions for App recommendations. We propose
a new framework ActionRank, which simultaneously captures
various signals from user actions for App recommendations.
Experimental results on real-world datasets demonstrate the
effectiveness of the proposed framework.

Keywords-App recommendations, user behaviors, one-class
collaborative filtering

I. INTRODUCTION

Mobile Apps have become increasingly popular in recent
years. With the huge amount of Apps in App markets every
year, it’s difficult for people to find the Apps they are
interested in. Thus, App markets, such as Apple Store1 and
Google Play Store2, categorize the Apps and recommend
specific Apps for users. However, the ranking list of Apps
provided by App markets are usually general for all users
which cannot satisfy the personalized user tastes. Thus, a
personalized App ranking list is more desirable that has
cultivated numerous App recommender systems by min-
ing user’s personal interests from various sources such as
reviews written by users [1], App functionalities [2] and
information from Twitter [3].

Figure 1 gives a typical scenarios when a user u1 attempts
to find an App satisfying his/her tastes. User u1 first browses
the App lists and gets brief and basic information about
Apps such as icon images, App genres and user ratings.
If she is attracted by an App, she will view the detailed
App description to decide whether to get it or not. This
aforementioned process produces massive user action data
such as viewing or downloading. These actions could provide
useful and personalized signals about users’ preferences

1https://itunes.apple.com/us/genre/ios/id36?mt=8
2https://play.google.com/store/apps

Figure 1. An example of user action behaviors in App market. During the
process of user browsing App list, the user views App v1 and downloads
it, views App v3 without downloading it, and does not perform action on
App v2.

towards Apps. First, user actions can indicate the ranking
of users’ preferences towards Apps (or preference ranking
signal). For example, u1 is more likely to prefer those Apps
she has viewed, such as v1 and v3, rather than other Apps she
does not perform actions on, such as v2. Second, different
users could take actions on Apps at different time; for
example, officers may need to work at daytime and usually
view or get Apps during lunch time or after work, while
students are more flexible to access the platform. Moreover,
Apps from different categories have distinct temporal dis-
tributions on action taken time within a cyclic period, such
as daily or weekly. Thus user actions afford rich temporal
information (or temporal signal) about user preferences.
Third, the descriptions of the Apps viewed/downloaded by
a user (or content signal) are strongly related to users’
preferences. For example, u1 views and downloads App v1
with description d1 containing “invincible power”, she is
more likely to play role-playing games. Similarly, u1 views
App v2 with description d2 including “wonderful sound
quality”, which also indicates her preference to music Apps.
User actions provide strong signals for users’ preferences
that can be explored to build effective App recommender
systems. However, the work on exploring user actions for
App recommendations is rather limited.

In this paper, we study the user action driven top-k App
recommendation problem by exploiting the aforementioned
three signals about users’ preferences. In essence, we inves-
tigate: (1) how to model these signals mathematically; (2)
how to take advantage of these signals from user actions for
mobile App recommendations. In an attempt to solve these
two challenges, we propose a novel framework ActionRank

that captures various signals from user actions for personal-
ized mobile App recommendations. The main contributions
of the paper are summarized as follows:

• We provide a principled way to model signals from user
actions;

• We propose a new framework ActionRank which inte-
grates various signals from user actions into a coherent
model for personalized App recommendations;

• We conduct experiments on real-world datasets to
demonstrate the effectiveness of the proposed frame-
work ActionRank.

II. MODELING USER ACTIONS FOR APP RANKING

In this section, we discuss the details of extracting pref-
erence ranking, temporal and content signals, and how to
integrate them for App personalized recommendations.

A. Modeling Preference Ranking Signal

During users’ browsing process for finding their interested
Apps, they can decide to take action on the Apps or not.
Thus, we can learn users’ preference to different Apps
based on whether they take actions on the Apps or not. For
simplicity, we use download action to illustrate the idea.

We denote S ⊂ U × V to be the observed actions from
users to all Apps, then we define V+

i := {vj ∈ V : (ui, vj) ∈
S} which contains all the Apps that user ui performed
actions on. If an App vj is downloaded by user ui (i.e.
vj ∈ V+

i), then she prefers vj over any App vk in the set
of Apps which she does not download (i.e. vk ∈ V\V+

i).
Thus, we represent the training set to learn the preference
ranking signal as a set DS ∈ U × V × V , which is defined
as follows,

DS = {(ui, vj , vk)|vj ∈ V+
i ∧ vk ∈ V\V

+
i } (1)

To compute the preference of user ui towards App vj , we
adopt the matrix factorization method as the basic model
to learn the latent representations of users and items. Let
X ∈ {0, 1}n×m denote the user-App action matrix, it is
approximated by X̂ which is the product of two low-rank
matrices U ∈ Rn×K and V ∈ Rm×K which satisfies,

X̂ = UVT (2)

where K is the dimension of latent factors, U is the user
latent factor matrix with each row ui being ui’s latent factor
and V is the App latent factor matrix with each row vj being
the latent factor for App vj . Thus the predicted preference
of user ui to App vj x̂ij can be represented by,

x̂ij = ui · vT
j (3)

The objective becomes that we want to rank the observed
Apps (e.g., vj) higher than all non-observed Apps (e.g., vk).
Similar to Bayesian Personalized Ranking (BPR) [4], we

define x̂ijk, which can capture the relationship between user
ui, App vj and App vk, as below,

x̂ijk = x̂ij − x̂ik (4)

which actually differentiates the ranking of Apps that have
been viewed or downloaded (e.g. vj) with the ones having no
actions observed (e.g. vk) by user ui. Then the probability
that the user ui prefers App vj to App vk can be com-
puted by σ(x̂ij − x̂ik) where σ is a sigmoid function (i.e.
σ(x) = 1

1+e−x). Thus, the objective function is to minimize
the negative log likelihood as follows,

min
U,V

∑
(ui,vj ,vk)∈DS

− lnσ(ui(v
T
j −vT

k))+ϕ(||U||2F + ||V||2F)

(5)
where the term ϕ(||U||2F + ||V||2F) is added to avoid over-
fitting.

B. Modeling Temporal and Content Signals

From the preference ranking signal, we can obtain the user
preference vector ui via Eq. (5) for each user ui. For each
user ui, we can extract a set of features from the temporal
and content signals as fi ∈ R1×d and we assume there is a
embedding matrix W ∈ Rd×K that can map fi to ui linearly
by following ui = fiW. Given ui and fi, the mapping
function W can be obtained by:

min
W

∑
ui∈U

||ui − fiW||22 + ζ||W||2F (6)

where the term ζ||W||2F is introduced to avoid over-fitting.
Next we give more details about how to construct fi from

the temporal and content signals.

Extracting Temporal Features
To model this non-uniformness property of user actions,

we first introduce temporal state t ∈ [1, T] to represent
the hour of the day, where T = 24 is the total number
of temporal states. Then we represent f (1)

′

i as,

f
(1)′

i = (n1, n2, ..., nT) (7)

where nt is the number of Apps taken actions on by user ui
in the t-th temporal state. For easier comparison of temporal
features among different users, we further normalize the
vector with the corresponding z−score [5] as shown below,

Z(nk) =
nk − µ(f (1)

′

i)

σ(f
(1)′

i)
(8)

where µ(f
(1)′

i) and σ(f
(1)′

i) are the mean and standard
deviation of feature vector f (1)

′

i , respectively. Therefore, the
normalized temporal feature vector can be represented as,

f
(1)
i = (Z(n1), Z(n2), ..., Z(nT)) (9)

Table I
THE STATISTICS OF DATASETS

Datasets ViewData GetData

No. of users 10, 627 10, 583
No. of Apps 12, 730 5, 721
No. of actions 1, 275, 806 288, 878
Density 9.4× 10−3 4.8× 10−3

Extracting Content Features Since the content signal is
from the set of the descriptions of the Apps a user has taken
actions on, to construct features from the content signal, a
natural choice is to use topic models such as LDA ([6]) to
learn the latent topic distributions from descriptions. In this
way, all the Apps that have been visited by user ui can be
represented as a vector f

(2)
i that denotes users’ preference

distribution over these latent topics.
To this end, we can concatenate the above features to-

gether and generate fi as follows,

fi := [f
(1)
i , f

(2)
i] (10)

and the relative importance of temporal and content features
can be optimized by using the weight matrix W.

C. The Proposed Framework-ActionRank

With Equation 5 modeling the preference ranking signal
and Equation 6 modeling the temporal and content signals,
the proposed framework ActionRank solve the following
optimization problem to model these three signals:

min
U,V,W

∑
(ui,vj ,vk)∈DS

− lnσ(ui(v
T
j − vT

k))

+α
∑
ui∈U

||ui − fiW||22

+λ(||U||2F + ||V||2F + ||W||2F)

(11)

where U ∈ Rn×K and V ∈ Rm×K are the latent matrices
of users and Apps, respectively. W ∈ Rd×K is a linear map-
ping matrix that connects the temporal and content signals
with the preference ranking signal. fi is the set of the features
on user ui extracted from the temporal and content signals.
α is a scalar which controls the contributions from the
temporal and content signals. λ(||U||2F + ||V||2F + ||W||2F)
is introduced to avoid over-fitting problem.

Since objective function in Equation 11 is non-convex
with respect to U,V and W, we use alternating least square
method which optimizes one variable by fixing the other
variables.

III. EXPERIMENTAL EVALUATION

In this section, we will conduct experiments on real-world
datasets to demonstrate the effectiveness of the proposed
framework.

A. Datasets and Experimental Settings

We use the user log data from an iPhone App company
named Limited-time Free3, which collects the information of
those Apps for some time in Apple App Store. This platform
can record two types of actions for each user4: 1) ViewApp
which means that users pick up an App and view the
detailed description, and 2) GetApp that indicates that users
download some Apps after viewing the App descriptions.
Users perform two types of actions in the dataset including
viewing and downloading. Thus, we construct two datasets
from the dataset: ViewData and GetData (see Table I).

We randomly hide a fraction of positive user-App
pairs and use the remaining x% of all Apps to form a
partially observed matrix for training. The hidden user-
App pairs form the test set. We repeat the generating
process of training/test set for three times and the average
performance is reported. We use top-k evaluation metrics to
measure the recommendation performance:Precision@k =
1
|U|

∑
ui∈U

|TopK(ui)∩App(ui)|
|TopK(ui)| and Recall@k =

1
|U|

∑
ui∈U

|TopK(ui)∩App(ui)|
|App(ui)| . where TopK(ui) is the

set of Apps recommended to user ui that ui has not visited
in the training set. App(ui) indicates the set of Apps
that have been performed actions in testing set. In our
experiment, k is set to 5 and 10, respectively.

B. Recommendation Performances

The ranking methods for comparison include: RAND:
which rank Apps randomly for users and is non-
personalized. UCF: User-oriented collaborative filtering,
which finds a set of users similar to the target user and
recommends those Apps that has been viewed or down-
loaded by those similar users to the target user; NMF:
Nonnegative Matrix Factorization based collaborative filter-
ing [7]; BPR: Bayesian Personalized Ranking optimization
for MF [4], which is the state-of-art approach for implicit
feedback data; UBPR: which considers the temporal and
content signals from user actions. Note that there are two
set of features: f (1) from the temporal signal and f (2) from
the content signal. We can incorporate either f (1) or f (2)

or their combination. Thus, we construct three variants:
UBPR f (1), UBPR f (2) and UBPR f (1,2). We have
following observations:
• We can see that the ranking performance of RAND

is very low, which indicates our problem is really
challenging. Even though the value of precision and
recall for UBPR is not very high, but compared with
RAND method, its performance is way better.

• The ranking performance of BPR is much better than
UCF and NMF on both datasets (i.e. BPR > UCF
and BPR > NMF). The reason is BPR models

3https://itunes.apple.com/app/id440230030
4The user information is properly anonymized.

Size of training set
20% 40% 60%

P
re
ci
si
on

@
5

0

0.05

0.1

0.15

UBPR f (1,2)

UBPR f (2)

UBPR f (1)

BPR

NMF

UCF

RAND

(a) Precision@5

Size of training set
20% 40% 60%

R
ec
al
l@

5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

UBPR f (1,2)

UBPR f (2)

UBPR f (1)

BPR

NMF

UCF

RAND

(b) Recall@5

Size of training set
20% 40% 60%

P
re
ci
si
on

@
10

0.02

0.04

0.06

0.08

0.1

0.12

0.14

UBPR f (1,2)

UBPR f (2)

UBPR f (1)

BPR

NMF

UCF

RAND

(c) Precision@10

Size of training set
20% 40% 60%

R
ec
al
l@

10

0

0.01

0.02

0.03

0.04

0.05

0.06

UBPR f (1,2)

UBPR f (2)

UBPR f (1)

BPR

NMF

UCF

RAND

(d) Recall@10

Figure 2. Precision@5, Recall@5, Precision@10 and Recall@10 on GetData.
Table II

THE ABSOLUTE AVERAGE IMPROVEMENTS OF OUR UBPR METHODS COMPARED WITH BPR. THE RESULTS WITH BOLD FONTS AND STARS ARE
STATISTICALLY SIGNIFICANT UNDER t-TEST.

Dataset Proposed Methods Precision@5 Recall@5 Precision@10 Recall@10 AUC

GetData
UBPR f (1,2) 13.01%∗ 15.41%∗ 8.26%∗ 7.14%∗ 7.56%∗

UBPR f (1) 6.41%∗ 9.60%∗ 5.70%∗ 5.66%∗ 5.71%∗

UBPR f (2) 6.59%∗ 10.56%∗ 8.10%∗ 4.60%∗ 5.83%∗

ViewData
UBPR f (1,2) 9.05%∗ 13.92%∗ 5.84%∗ 14.43%∗ 3.47%∗

UBPR f (1) 5.72%∗ 8.62%∗ 4.00%∗ 11.94%∗ 2.38%∗

UBPR f (2) 6.03%∗ 9.44%∗ 3.53%∗ 11.26%∗ 2.47%∗

the preference ranking signal from user actions, which
indicates the effectiveness of preference ranking signal.

• The proposed UBPR model with either temporal or
content signal is always better than BPR model (i.e.
UBPR f (1) > BPR and UBPR f (2) > BPR).
This indicates that the temporal and content signals
contain complimentary information to the preference
ranking signal and thus help to improve the ranking
performance. The absolute improvements are shown in
Table II and is averaged over all test data. We can see
that the temporal and content signals can significantly
improve the performance almost in all cases.

• Moreover, the proposed UBPR model with both tem-
poral and content signals achieves slightly better rank-
ing performance than UBPR with either temporal or
content signal (i.e. UBPR f (1,2) > UBPR f (1) and
UBPR f (1,2) > UBPR f (2)). From Table II, we can
also see that the improvement value for UBPR f (1,2)

is biger than either UBPR f (1) or UBPR f (2) in
most of the cases with statistically significant level.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed a user action driven framework
ActionRank for App personalized ranking. First, we utilize
BPR to model user preferences ranking signal; Second, we
capture temporal and content signals to represent users’
action time habits and tastes of Apps. Third, the proposed
framework incorporates these three types of signals into a
coherent model. Experimental results on real-world datasets
demonstrate the effectiveness of the proposed framework
and the importance of user actions in App recommendations.

In the future, we will consider other approaches to model

the temporal [8] and cold start scenarios [9] for recommend-
ing those long tail Apps. In addition, we will combine other
explicit feedbacks such as user reviews and ratings to help
improve App recommendations.

V. ACKOWLEDGMENTS

This material is based upon work supported by, or in part
by, the ONR grant N00014-16-1-2257, N000141310835 and
ARO (W911NF-15-1-0328).

REFERENCES

[1] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh,
“Why people hate your app: Making sense of user feedback
in a mobile app store,” in KDD’13.

[2] P. Yin, P. Luo, W.-C. Lee, and M. Wang, “App recommen-
dation: a contest between satisfaction and temptation,” in
WSDM’13.

[3] J. Lin, K. Sugiyama, M.-Y. Kan, and T.-S. Chua, “Addressing
cold-start in app recommendation: latent user models con-
structed from twitter followers,” in SIGIR’13.

[4] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-
Thieme, “Bpr: Bayesian personalized ranking from implicit
feedback,” in UAI’09.

[5] M. Margulies, M. Egholm, W. E. Altman, S. Attiya, J. S.
Bader, L. A. Bemben, J. Berka, M. S. Braverman, Y.-J. Chen,
Z. Chen et al., “Genome sequencing in open microfabricated
high density picoliter reactors,” Nature’05.

[6] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” JMLR’03.

[7] D. D. Lee and H. S. Seung, “Algorithms for non-negative
matrix factorization,” in NIPS’01.

[8] H. Gao, J. Tang, X. Hu, and H. Liu, “Exploring temporal
effects for location recommendation on location-based social
networks,” in RecSys’13.

[9] S. Wang, Y. Wang, J. Tang, K. Shu, S. Ranganath, and H. Liu,
“What your images reveal: Exploiting visual contents for point-
of-interest recommendation,” in WWW’17.

