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ABSTRACT
Natural language is used to describe objective facts, including sim-
ple relations like “Jobswas the CEO of Apple”, and complex relations
like “the GDP of the United States in 2018 grew 2.9% compared with
2017”. For the latter example, the growth rate relation is between
two other relations. Due to the complex nature of language, this
kind of nested relations is expressed frequently, especially in profes-
sional documents in fields like economics, finance, and biomedicine.
But extracting nested relations is challenging, and research on this
problem is almost vacant. In this paper, we formally formulate the
nested relation extraction problem, and come up with a solution
using Iterative Neural Network. Specifically, we observe that the
nested relation structures can be expressed as a Directed Acyclic
Graph (DAG), and propose the model to simultaneously consider
the word sequence of natural language in the horizontal direc-
tion and the DAG structure in the vertical direction. Based on two
nested relation extraction tasks, namely semantic causality rela-
tion extraction and formula extraction, we show that the proposed
model works well on them. Moreover, we speed up the DAG-LSTM
training significantly by a simple parallelization solution.

ACM Reference Format:
Yixuan Cao, Dian Chen, Hongwei Li, Ping Luo. 2019. Nested Relation Ex-
traction with Iterative Neural Network. In The 28th ACM International
Conference on Information and Knowledge Management (CIKM ’19), No-
vember 3–7, 2019, Beijing, China. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3357384.3358003

1 INTRODUCTION
Relation Extraction (RE) is an important task in natural language
processing. It is the foundation and data source for many down-
stream tasks such as knowledge base construction, question an-
swering, etc. The task of RE is that given a sentence and entities in
this sentence (such as persons and locations), determine whether
there are relations among some of the entities, and what the relation
types are. The traditional relation extraction problem extracts rela-
tions between two entities, such as PERSON-ORG relation between
Steve Jobs and Apple.

There are two major research directions in this field: supervised
and distant supervised (DS) RE. The main difference is that the
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1.(China GDP in 2018) = $13.41 trillion
2.(U.S.  GDP in 2018)-(China GDP in 2018) = $7.08 trillion
3.(China GDP in 2018)-(China GDP in 2017) = $1.17 trillion

RC8  : Economic-Index(China, GDP, 2018)
RC8e : Equal(RC8, $12.24 trillion)
RU8  : Economic-Index(U.S., GDP, 2018)
RU-C : Subtract(RU8, RC8)
RU-Ce: Equal(RU-C, $7.08 trillion)
RC7  : Economic-Index(China, GDP, 2017)
R8-7 : Subtract(RC8 - RC7)
R8-7e: Equal(R8-7, $1.17 trillion)

The GDP in China was $13.41 trillion in 2018, $7.08 
trillion less compared with U.S., $1.17 trillion more 
compared with 2017.

Relations:

Expressed facts:

Figure 1: Example of nested relations

training data of DS RE comes from some heuristic alignment be-
tween sentences and knowledge bases like FreeBase, whereas the
training data of supervised RE comes from manual annotation. The
research interest of DS approach focuses on how to handle the noisy
data [10, 32]. Supervised RE assumes the training data is clean, and
focuses more on model structure and external information incorpo-
ration [22, 30, 35].

While our research adopts a supervised approach, we want to
categorize RE from a different perspective: the complexity of re-
lations to extract. Traditional relation extraction researches focus
on extraction of simple relations: relations between two entities
(binary relations). But real world relations can be complex.

Complex relations are expressed in natural language frequently,
especially in economics, finance, biomedicine and other fields where
people need to express in a precise way. A complex relation may
have multiple participants and the participant may be another
relation. For example, in the field of health, sentence “2.5 mg
Albuterol may be used to treat acute exacerbations, particu-
larly in children.” expresses a relationwith 4 participants (Albuterol,
acute exacerbations, 2.5 mg, children) to accurately describe
the fact [9]. This kind of information appears in a vast amount of
medical journals. Extracting the complete information from the
corpus is the fundament of large scale knowledge base construction.

Another example shown in Figure 1 expresses relations about
the economic statistics which could come from politicians who
want to convey his/her opinion on certain issues. Since we are in a
society congested with false-hoods, hyperboles and half-truths, a
lot of efforts have been done on fact-checking of political discourses
and scientific papers to ferret out misinformation [12, 23]. Accurate
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and complete structured relation extraction from those claims is a
vital component to this end. To automatically vet the claim in Fig-
ure 1, we need a general extractor for world economic information.
Specifically, we have to extract fact that involves time, economic in-
dex, country and value entities like (China GDP in 2018)=$13.41
trillion. Moreover, the claim about the difference between (U.S.
GDP in 2018) and (China GDP in 2018) described by “$7.08
trillion less” also has to be extracted.

We summarize the complexity of relations into two aspects: high-
arity and nested. Traditional RE extracts relations between two enti-
ties, such as PERSON-ORG relation between Steve Jobs and Apple.
High-arity extends the concept of relation to be among multiple
entities. Nested extends the concept of relation to be upon other
relations. To describe the first fact of Figure 1, we first need a high-
arity relation among three entities RC8: Economic-Index(China,
GDP, 2018), where Economic-Index is the relation type. We say
this relation RC8 has arity 3 (3 operands). In other words, this is a 3-
ary relation. Secondly, we need a nested relation RC8e: Equal(RC8,
$13.41 trillion). Note that although RC8e is a 2-ary (binary)
relation, its first operand is another relation RC8. This is different
from traditional RE which only extract relations among entities.
RU-C, RU-Ce, R8-7, R8-7e are all nested relations.

Although high arity and nested are different, they are related to
each other. The RC8 relation in Figure 1 may be decomposed further
into 2 binary relations: ((China, GDP), 2018). The relations are
represented nested and relation types are omitted for brevity. More
generally, for an ordered n-ary relation (the entities in relation are
ordered), we can always decompose it into n − 1 nested binary
relations. However, using high-arity relation to represent nested re-
lations may add complexity to the problem definition. For example,
if we define a “+” relation to be between two entities or other “+”
relations, nested relations like ((a + b) + c) can represent addition
among 3 elements. Without nested relation, we have to define “2+”
for 2-ary addition, and “3+” for 3-ary addition, which is inflexible
and complex. From this aspect, nested relations are more flexible
and expressive than high arity relations. So, in this paper, we focus
on extraction of nested relations.

Researches on formulating and developing general models for
nested RE are almost vacant as far as we know. In this paper, we
give a formal formulation about nested relation extraction. Then,
an Iterative Neural Network is proposed to extract nested relations
layer by layer. It extracts one layer of relations at a time by gen-
erating all possible candidates and classifying them. The positive
candidates become new relations to generate next layer candidates.
This process iterates until no new candidates can be generated.
The neural network has two major parts, the horizontal part in-
cludes Bidirectional-LSTM and attention mechanism to represent
entities, and the vertical part is a relation representation neural
network composed of DAG-LSTM which will grow as we extract
more nested relations.

Speed of neural network is crucial for its prevalence in research
and in practice. Parallelized computing promoted the widespread
usage of CNN and RNN. One extreme is that although RNN has
been optimized to process multiple sentences in parallel, since it has
to process tokens serially, more parallelized models like attention-
based Transformer [8] have emerged to replace RNN models on
some tasks. With the development of deep learning, more and more

complex structure neural networks are developed for different tasks.
The tree- or DAG-LSTM used in this paper has been applied in many
tasks [22, 26, 36]. In their task, tree-LSTM is applied on a given
structure like dependency tree, with relatively few structure nodes.
On the contrary, our model attempts to extract the structure by
generating a lot of candidate nodes. That means tree-LSTM will
be time consuming. Therefore, the naive serial implementation of
DAG-LSTM is not suitable for GPU computation due to the lack of
parallelization. In this paper, we introduce a simple algorithm to
parallelize the computation of DAG-LSTM. The key idea is that all
relations in the same layer in a batch can be computed in parallel.
And the result shows that it can be hundreds of times faster than
serial implementation when the number of candidates is huge.

Two example tasks that contain a large amount of nested rela-
tions were introduced in experiment. The semantic causality re-
lation extraction task extracts semantic cause-and-effect relations
between clauses or other cause-and-effect relations. People express
cause-and-effect relations when they want to explain or support
their opinions. Extracting this information may help collect cause-
and-effect relations between real world events for common sense
knowledge construction. And the result can also be used for fact-
checking. The formula extraction task extracts financial indexes,
and the arithmetic relations such as proportions and subtractions.
This task involves highly nested relations (up to 4 or 5 layers) with
diverse structures. The results on these tasks show the necessity of
nested relation extraction and the effectiveness of our model.

2 NESTED RELATION EXTRACTION
Nested Relation Extraction is the problem that given a text and
typed entities, extracts semantic relations among multiple elements
(entities or other relations) expressed by text.

A relation extraction task is usually carried out following a pre-
defined task-specific schema. The ACE 2004 relation extraction
task [1] defined five general types of relations, and further sub-
divided into a total of 24 types/subtypes of relations. Only semantic
relations fall into these categories will be annotated for training
and extracted during inference. For the example shown in Figure 1,
one task may want to extract all relations shown in figure, while
another task only needs to extract the first fact and neglect the
other two. Thus defining the schema of a task is important in real
world problem, since this is the guide for annotation and model
construction.

The schema of traditional binary relation between two entities
is relatively simple. Here, we give a general framework to define
schema for nested relation extraction task by introducing notions of
entity, relation, and configuration of relations. For a specific nested
RE task, we need to define the task schema at the beginning to
formally define what kind of relations under which constraints to
extract (but semantically what is a relation is not defined here).

Entity. An entity consists of a word sequence and an entity label
(type), denoted as l(wi , ...,w j ). It is a mention of certain real world
entity. The example shown in Figure 1 contains entities like

• Index(GDP),
• Country(China), and
• Value($, 13.41, trillion)
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where Index, Country, Value are labels and GDP, China, $13.41
trillion are words in entities. The notation of relations in Figure 1
omitted the entity types. We denote the set of all kinds of entity
labels in this task as E.

Note that this definition where entities are typed is in line with
tasks like ACE 2004 and ACE 2005 [3]. But it is different from
SemEval-2007 Task 4 and SemEval-2010 Task 8 in which all entities
are “nominals” [11, 13]. Attaching labels to entities has advantages
and disadvantages. The advantage is that we can shrink the search
space and reduce the number of classification by constraining what
kind of combination of entities may form a relation. The disadvan-
tage is that we shift some of the burden to the preceding named
entity recognition module, and errors from that module may propa-
gate. In this paper, we attach labels to entities in order to automate
the extraction process (introduced in section 3).

Relation.We use element to refer to a relation or an entity. One
relation consists of a tuple of elements and a relation label (the type
of the relation). The behavior of one type of relations is defined
as follows. Suppose l is a label, Li is a set of labels, Rl the set of
elements with label l , and RLi =

⋃
l ∈Li R

l . Rl satisfies

Rl ⊆ RL1 × · · · × RLk

which means Rl is a subset of Cartesian product of RLi . We call
Cartesian product L1×· · ·×Lk as the configuration of Rl , denoted
as Cl . The behavior of relations with label l is defined by Cl . We
denote L as the set of all relation labels in this task.

A tuple of elements (e1, ..., ek ) ∈ Rl , or has l relation, if and only
if

(1) this tuple satisfies Cl , that is ei ∈ RLi for all i = 1, ...,k , and
(2) the l relation among these elements is semantically described

in the sentence.
We denote this relation instance as

l(e1, ..., ek ),

and we call ei the i-th operand of the relation.
For example, the configuration of Economic-Index(EI) relation

is {Country,Region} × {Index} × {Year,Quarter }. That means the
first operand of an EI relation must be an entity with label Country
or Region, the second operand must be an entity with label Index,
and the third operand must be an entity with label Year or Quarter.
The formal notation of RC8 should be

EI(Country(China), Index(GDP), Year(2018))

where each of its operand is a typed entity instead of words. Ac-
cording to condition (1), tuples not satisfying the configuration, like
(China, U.S., 2018), will never have EI relation. Suppose we
add “The president of Canada said” at the beginning of the sentence
in Figure 1. (Canada, GDP, 2018) satisfying the configuration of
EI. However, according to condition (2), since it is not semantically
described in sentence, this tuple does not have EI relation. This is
why Rl is a subset of RL1 × · · · × RLk .

Schema. Based on the definitions above, a schema of a nested
relation extraction task is defined by specifying the entity label
set E, the relation label set l and the configuration of each relation
Cl , l ∈ L.

Take the economic performance extraction task shown in Fig-
ure 1 as example. The entity label set E, relation label set L, and

configurations of relations are as follows:
E ={Country,Region,Index,Year,Quarter,Value}

L ={Economic-Index(EI),+,−,÷,=}

CEI ={Country,Region} × {Index} × {Year,Quarter}

C− ={EI,Value,+,−,÷} × {EI,Value,+,−,÷}

C+ =C÷ = C= = C−

When the configurations of some relations contain other rela-
tions, the relation structure can become nested. − and ÷ relations
are mutually included, so the relations can be arbitrarily nested in
this task.

3 SOLUTIONWITH ITERATIVE NEURAL
NETWORK

The major challenge of nested relation extraction is that we cannot
determine the total number of candidate tuples in a sentence, even
though we know the number of entities. This is because relations
can be arbitrarily nested. The traditional binary relation extraction
or high-arity relation extraction problem extracts flatten relations.
Therefore, they can enumerate the tuples of entities (candidates)
to classify. However, when the relations become nested, only the
lowest layer of candidates (among entities) may be generated and
classified using the traditional methods. To solve this problem, we
propose to generate candidate tuples for classification on the fly
when new relations are extracted layer by layer. And the generating
process follows the task schema.

To classify a candidate, some REmethods generate features based
on the left and right context of two entities, including hand-crafted
features and CNN-based features [32]. These methods are not ap-
plicable to nested situation where the operand of a relation may be
another relation. A nested relation could involve arbitrary number
of entities, and defining context of multiple entities is complicated.
Fortunately, deep learning is good at representation. Existing meth-
ods generate a vector of relation for classification. But that vector
may also represent the semantic meaning of a relation. We repre-
sent relations and entities by unified distributed representations,
and classify based on these representations. Thus, we are able to
extract nested relations layer by layer iteratively.

3.1 Iterative Neural Network
In this subsection, we will first give an overview about the process
to iteratively generate and classify candidates. Then we introduce
the model structure and details.

We define a candidate with label l as a tuple of elements that
satisfies (e1, ..., ek ) ∈ RL1 × ... × RLk , where Cl = (L1, ...,Lk ), but
do not know whether (e1, ..., ek ) ∈ Rl . So a candidate is a tuple
that satisfies the configuration of its relation type, but whether its
semantic meaning is correct or not is to be determined. We denote
it as l � (e1, ..., ek ).A left arrow is used to distinguish it with the
notation of relation.

Process Overview. The overall process of iterative neural net-
work is to extract relations layer by layer iteratively. There are
three steps to extract one layer of relations:

(1) generate candidates according to configurations
(2) classify them
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Figure 2: Model structure with an input example

(3) set the positive candidates as relations.

Notice that, in step 1, all candidates that can be generated (not
generated in previous layers) from current state are generated. At
the beginning of the i-th layer, we put all entities and relations
extracted from previous layers into a set R, all candidates generated
before into a set Q . The candidates we need to generate is the set:

{ l � (e1, ..., ekl ) | l ∈ L ∧ ei ∈ R ∧ (e1, ..., ekl ) satisfies C
l∧

l � (e1, ..., ekl ) < Q}

To classify candidates, we propose an iterative neural network. It
is composed of three major modules. In horizontal orientation, there
are text representation module and entity representation module.
And in vertical orientation, there is relation representation module.
The relation representation module is suitable for the iterative
generating and classifying process, since its structure is flexible.

The whole iterative neural network model is illustrated in Fig-
ure 2. We use the example in Figure 1 to show the model structure.
The words are presented at bottom, followed by text representa-
tion model composed of embedding layer and Bidirectional-LSTM.
Then each entity is represented using attention mechanism over
its tokens. Finally, in relation representation model, hidden vec-
tors of relations and candidates are computed layer by layer using
DAG-LSTM cells. Hidden vectors of candidates are fed into fully
connected networks for classification (shown as “cls” boxes). The
positive ones (with check mark) might connect to the next layer. For
example the “-” cell is fed into next layer because it is operand of
other candidates. However, “=” cell is positive but not fed into next
layer because it is not operand of any other candidates according
to the task schema discussed in Section 2. And the negative ones
(with cross mark) are discarded.

The text representation module consists of a word embed-
ding layer and a bi-directional LSTM [15] layer. This module con-
verts each word into a hidden vector hi that encodes information
about this word and its context.

The embedding layer has an embedding look up table, which is
a large matrix. The i-th vector in the matrix is the embedding of
the i-th word in vocabulary.

The uni-directional LSTM network is a variant of recurrent neu-
ral network. It takes as input a token sequence. At each step (each
token), a LSTM cell combines previous step cell and hidden vectors
and the current step input vector, to produce a new hidden vector:

ht = f (ht−1, ct−1,xt ).

The hidden vector encodes information of the input sequence from
the beginning to current step. Bi-directional LSTM contains two
uni-directional LSTMs (one takes as input the forward sequence
and the other the backward sequence). And hidden vector of each
word is the concatenation of two LSTM outputs.

The entity representation module is used to represent enti-
ties. One entity might consist of multiple words. Thus, multiple
hidden vectors of words are associated with an entity. However,
a fixed length representation is wanted for an entity. So we apply
a dot product attention [18] on words in this entity. Suppose the
word vectors in this entity are (h1,h2, ...,hn ), the hidden state h of
entity is computed as:

si =w
Thi , for i = 1, ...,n

ai =
exp(si )∑n
j=1 exp(sj )

h =
n∑
i=1

aihi

wherew is a trainable parameter.
The relation representation module applies DAG-LSTM to

represent relations and candidates. The DAG-LSTM is an extension
of Tree-LSTM [7, 26] that has been applied in many tasks [22, 26].
One DAG-LSTM cell combines hidden vectors of multiple operands
into a vector to represent its corresponding relation or candidate.
And multiple layers of DAG-LSTM cells will let the information
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Table 1: Notions and notations used in speed up method.

Notation Description

b Number of sentences in a batch
nea ,n

r
a Number of elements (entities and relations) in the a-th sentence in batch

n maxa=1, ...,b {nea + nra }
d Dimension of hidden vector
H H ∈ Rb×n×d . The tensor of hidden vectors of all relations
N Number of relations in one layer in a batch

A,T , S Each has N rows. Aj = a,Tj = ir , Sj = [io1 , ..., iok ] means that the j-th row of them record a relation r ,
which comes from the a-th sentence with index ir , and its operand l has index iol .

flow among the nested relations and candidates. One DAG-LSTM
cell takes as input the hidden and cell states hj , c j from each of its
operands, and the embedding e of the relation label. For simplicity,
we concatenate hidden vectors into vector v = [h1, ...,hk ]. The
computation process is as follows:

i =σ
(
W ie +U iv + bi

)
fj =σ

(
W

f
j e +U

f
j v + b

f
j
)
, j = 1, ...,k

o =σ
(
W oe +U ov + bo

)
ĉ = tanh

(
W ce +U cv + bc

)
c =i ⊙ ĉ +

∑k
j=1 fj ⊙ c j

h = tanh(c) ⊙ o

(1)

whereW ∗,U ∗,b∗ are network parameters, ⊙ is element-wise prod-
uct, h and c are hidden and cell states of this relation or candidate.
To classify a candidate, we feed its hidden vector h into a multi-
layer fully connected networks followed by Softmax function to
compute its probability of correctness.

Training. The annotated data only contain correct relations. To
train our model, we generate all possible candidates. Candidates
appear in annotation results are positive samples, and others are
negative samples. One sentence contains many samples (candi-
dates), we compute though text and entity representation module
for one time, which output the hidden vectors of all entities. Then
all candidates in this sentence are computed based on these vectors.
This will reduce redundant computations comparing to re-compute
entity hidden vectors for each candidate.

The training objective is to minimize the negative log-likelihood
over all candidates:

L =
∑
s ∈D

∑
c ∈C(s)

yc log(p(c)) + (1 − yc ) log(1 − p(c))

where D is dataset, s is one sentence,C(s) is the set of all candidates
in s , yc is the label of candidate c , and p(c) is the probability our
model predict that c is a relation.

3.2 Speedup
Most speedup methods in neural network perform computation in
parallel for all samples in a batch. This requires all samples in one
batch have the same “size”. For example, in CNN, all input pictures
must be resized to the same hight-width-channel size; in RNN, all
input sentences are truncated or padded into the same length.

The problem of nested relation extraction is that different sen-
tences have different relation structures. However, as shown in
Figure 2, the relation representation part can be decomposed by
layer. Moreover, the computations of relations in the same layer
are independent, because they only require hidden vectors of el-
ements from lower layers. If we computed all hidden vectors of
lower layers in advance, relations in the same layer can be com-
puted in parallel in a vectorized way on GPU. The implementation
overview is to make a large tensor to record hidden vectors of all
relations, and fetch vectors as inputs or set resulting vectors by
fancy indexing. We assume there is only one type of relation with
k operands (|L| = 1), the extension to |L| > 1 is straightforward.
Notions and notations used in this subsection are summarized in
Table 1. Details are introduced below with a concrete example.

Suppose we are training the model. In one update step, b sen-
tences are given in a batch, and the a-th sentence hasnea entities and
nra relations. For each sentence, we sort all relations and candidates
according to their topological orders and put entities and relations
into an element list. If an element has operands, its operands must
positioned before it in the list. Then each element has an index in
list from 0 to nea + nea − 1.

Take Figure 1 as example, during training, we know the number
of relations, and how to layer them. RC8, RU8, and RC7 are in the first
layer since they are based on entities. RC8e, RU-C, R8-7 are in the
second layer, since one of their operands is in the first layer. RU-Ce
and R8-7e are in the third layer, since one of their operands is in the
second layer. So the list is (0.GDP, 1.China, ..., 7.2017, 8.RC8, 9.RU8,
10.RC7, ..., 15.R8-7e). Suppose this sentence is the 3rd sentence in
the batch hereafter.

We allocate a large tensor H ∈ Rb×n×d in advance, where n =
maxa=1, ...,b {nea + nra }, d is the hidden size, and Ha,i is used to
record the hidden vector of the element with index i in the a-th
sentence. For example, H3,8 records the hidden vector of RC8. We
do not record hidden vectors of candidates in H since they will
be sent to classification once computed, and not involved in the
following computation. At the beginning, H is randomly initialized.
Then vectors of entities are put in, followed by the vectors of the
first layer relations, and so on.

For one layer of relations of b sentences in batch (N relations in
total), we construct three matrices, sentence index matrix A, target
element index matrix T and source element index matrix S , which
record information about where to get the operand vectors and
where to put the result vectors from and to H . Suppose one relation
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The reason for the diminishing of return 
on equality is that the company withdrew 15% of its stock� leading to the diminishing of its net profits

Clause Clause Clause

causality 
cause effect

causality
cause effect

C1 C2 C3

R1

Figure 3: Examples for semantic causality.
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Figure 4: Distributions of semantic causality dataset.

in this layer has index ir in the a-th sentence, and its k-th operand
has index iok , and we record it in the j-th row in A, T and S . Then,
Aj = a,Tj = ir , and Sj = [io1 , ..., iok ]. For example, if RC8 is the j-th
row, Aj = 3, Tj = 8, and Sj = [1, 0, 3].

By fancy indexing like H [A, S], we can get the hidden vectors of
operands of all relations in this layer, HS ∈ RN×k×d . Equation 1
can be applied to the input of one sample, which is one row of HS .
By similar batch computation method of ordinary LSTM implemen-
tation, Equation 1 can be applied toHS as a batch. Finally, the result
tenors are set into H [A,T ].

Notice that each layer will require its own A,T , S matrices, since
only relations in the same layer can be computed in parallel. And
this parallelization method will become more efficient as the batch
size and the number of relations or candidates increase.

4 EXPERIMENT
4.1 Semantic Causality Relation Extraction
Task Description. Semantic causality relation is the relation that
describes cause and effect between clauses or relations. For example,
Figure 3 (a) shows a sentence with three clauses C1, C2, and C3.
C2 is the cause of C3, which forms a relation R1. And R1 (or the
combination of C2 and C3) is the cause of C1. The task schema is:

E ={Clause},

L ={Causality},

CCausality ={Clause,Causality}×

{Clause,Causality}

Statistics. Ten thousand of sentences are selected and manually
annotated from bond prospectus in Chinese. The statistics about

the distribution of the number of relations and clauses in a sentence
are shown in Figure 4. The percentage of sentences that have 0, 1,
2, and ≥ 3 layers of relations are 4.25% , 81.13%, 13.72%, and 0.90%
respectively. So, 14.62% of sentences have nested relations.

Baseline. At first glance, this problem seems to be simple due to
the existence of keywords like “reason”, “leading to”, and “because”.
So we attempt to solve this problem by rule. By digging into the
annotated data, 293 distinct keywords are summarized into 4 cate-
gories. Then, each sentence is converted into a pattern sequence
consists of clauses and keywords, and 1344 patterns are found. We
summarize over 130 most frequent patterns based on these patterns
and their relation results, and come up with an expression parsing-
like algorithm. This algorithm can cover 518 patterns, more than
88% of sentences.

Settings. The hyper-parameter settings of our model is as fol-
lows. The vocabulary size is 6000 because the vocabulary in fi-
nancial dataset is relatively concentrated. The embedding size and
hidden vector size of Bi-LSTM are set to 256. We add position en-
codings [27] to word embeddings. Since Bi-LSTM will concatenate
hidden vectors from forward and backward, we set hidden size of
DAG-LSTM to 512. The final fully connected layer is 512× 1024× 2.
We use Adadelta [31] as the optimizer with learning rate = 1.0. The
batch size is 8.

Result Analysis. The evaluation metric is precision, recall and
F1. They are defined as

Precision =
|R̂ ∩ R |

|R̂ |

Recall =
|R̂ ∩ R |

|R |

F1 =
2 × Precision × Recall
Precision + Recall

where R̂ is the set of predicted relations, andR is the set of annotated
relations. The comparison of relation instances between R̂ and R
will compare both the operand tuple and the label. The results on
test set are shown in Table 2. Besides representing the overall result,
we also report the result by layer. And the number of relations in
each layer are shown in table. Since the relations in layer 3 or higher
are rare as discussed above, we report the result of relations in layer
1, and relations in layers ≥ 2.

We first compare the results between rule based algorithm and
our model. “From scratch” means that the model or the rule pre-
dicts relations layer by layer, and the error in one layer will propa-
gate to its subsequent layers. This is the situation when the model
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Figure 5: Examples for formula extraction.

Table 2: Results on semantic causality extraction.

Layer: All 1 ≥ 2

Rule
(From scratch)

Precision 70.80 73.07 48.11
Recall 17.48 19.53 6.74

F1 28.04 30.82 11.82

Our Model
(From scratch)

Precision 78.51 82.27 63.12
Recall 79.41 80.62 73.48

F1 78.96 81.43 67.91

Our Model
(Guided)

Precision 81.63 82.27 78.75
Recall 80.99 80.62 82.81

F1 81.31 81.43 80.73

is applied in real world. The first part of table shows that the perfor-
mance of rule based algorithm is poor on this dataset. The precision
of rule algorithm is lower than our model (about 10% lower in
layer 1), and it degrades dramatically in layers ≥ 2. Although we
have put efforts on rule designing and many rules are collected,
the recall is still very low (< 18%). Designing more rules may in-
crease its recall. But since there is a balance between precision and
recall, more rules may hurt the precision which is already lower
than model, and may bring conflict between rules. The second part
shows the result of our model. The overall F1 score is 81.08, which
is much higher than rule algorithm. Layer evaluation shows a drop
of performance on the second layer but significantly better than
hand-crafted rules. We think there are two reasons for this drop:
1) extraction the high layer relation is intrinsically harder, and 2)
according to the statistics introduced above, the number of high
layer relations is much smaller than the first layer. The comparison
between rule and our model indicates that the semantic causality
extraction is a non-trivial problem, despite the existence of strong
causal conjunction features like “since” and “because”.

In the last part of Table 2, “Guided” means that the prediction
results of current layer are replaced by correct results when predict-
ing the following layers. This is the situation when we are training
the model. We report this result to show the phenomenon of error

propagation. The overall performance of “Guided” is better than
“From scratch” for our model. The performances at layer one are the
same since their entities are the same. The performance of “Guided”
is 12.82% better than “From scratch” in layers ≥ 2. That means
the error in the first layer will propagate through layers and hurt
the performance in following layers. This brings in two types of
errors. If a relation is not recalled in the first layer, then relations
in subsequent layers which take it as operand can not be extracted.
This will affect the recall of subsequent layers. If a relation is falsely
extracted, the process might generate strange candidates based on
it which are never seen during training. This will affect the preci-
sion of subsequent layers. 21.04% of relations extracted from the
first layer are wrong (precision=78.96%). We think this might be
the third reason for the performance degradation in high layers
following the intrinsic hardness and lack of data.

4.2 Formula Extraction
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Figure 6: Distributions of formula extraction dataset.

Task Description. Verbal descriptions over the numerical rela-
tionships among some objective measures widely exist in financial
documents. We collect a large manually annotated dataset from
bond prospectus.

Figure 3 shows an example from our dataset. Three types of
entities are extracted in advance. A time entity describes a certain
time like year 2016. An index entity describes a financial index,
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Table 3: Results on formula extraction.

Layer: All 1 2 3 4 ≥ 5
#relations 238,290 98,163 103,110 34,517 1,308 1,192

From
scratch

P 96.05 97.93 95.83 93.05 70.92 69.25
R 95.85 97.42 96.07 93.29 71.87 54.60
F1 95.95 97.67 95.95 93.17 71.39 61.06

Guided
P 97.97 97.93 98.07 98.12 92.58 93.79
R 97.99 97.42 98.45 98.53 93.43 93.79
F1 97.98 97.67 98.26 98.32 93.00 93.79

like “other payables”. And a value entity describes a value like $ 80
million or 98%. The first kind of relation is the relation between time
and index. They are shown as relations with “@” mark. This kind
of relations refers to financial indexes at certain time, which should
be equal to some numbers. Then, the higher layers of relations are
summations, divisions and equations. The task schema is:

E ={Time, Index, Value}

L ={@, +, -, ÷, =, <, CGR, Prop}

C@ ={Time} × {Index}

C+ ={@, +, -, ÷, Value}×

{@, +, -, ÷, Value}

C= =C< = C− = C÷ = CCGR = C+

CProp ={@,+,−,÷}

The CGR (compound growth rate) relation is the relation described
in sentence like “the compound growth rate of income between
2005 to 2018”. The Prop relation is a division where the divisor is
omitted in sentence, so it is a relation with only one operand. And
we convert all “>” relations into “<” relations by reversing their
operands since we think they are syntactically similar in natural
language.

Statistics.More than a hundred thousand of sentences are anno-
tated. The statistics about the distribution of the number of relations
and layers in a sentence are shown in Figure 6. Note that there are
sparks at number of relation = 0. Since the sentences are not strictly
filtered, there are many sentences that contain no relations. Also
note that no sentences have one layer of relations. The first layer
of relations must be@ relations according to the definition above.
Our annotation guide requires to annotate @ relations that are
operands (or descendants) of equation or comparison relations. If
it is not operand of any other relations, it will not be annotated.
So, if there are relations in a sentence, it must have at least two
layers. Second layer relations are relations like = relations between
@ relations and numbers, or the arithmetic relation between @
relations. Third layer relations are relations like = relations between
arithmetic relations and numbers, or more complex arithmetic rela-
tions. The distribution shows that the relations are highly nested in
this dataset: more than one fourth of sentences have 3 or 4 layers
of relations.

Settings. This task is too complex to write rule based algorithm.
To our best knowledge, there are no existing methods on extracting
such highly nested relations. So we only test on our algorithm.

The hyper-parameter setting is exactly the same with the seman-
tic causality problem.

Result Analysis.We use the same evaluation metric like seman-
tic causality extraction: precision, recall and F1 on typed relations.
The results on test set are shown in Table 3. The first intuition
is that this result is better than semantic causality. We think this
largely attribute to the large amount of data: there are 10 times
more data in this task, and deep learning models are data hungry.

The result of Guided on different layers are relatively stable, F1
score drops slightly from 97.98% on layer 1 to 93.79% on layers ≥ 5.
That shows our model’s capability of extracting nested relations.
Notice that, F1 score in layer 1 is lower than layer 2 and 3. The rea-
son is as follows. Highly nested relations need lower layer relations
as operands. As mentioned above, our annotation guide asks to
annotate relations that are descendants of equation or comparison
relations only. Some of lower layer relations are very subtle be-
cause the model has to discover the high layer relations first before
extracting them. Thus extracting these lower layer relations are not
simpler than high layer ones. On the other hand, when the lower
relations are extracted, extracting higher layer relations becomes
easier. The results on layer 4 and 5 are lower than the first three
layers because the number of relations in layer 4 and 5 is one order
of magnitude smaller, as shown in “#relation” row.

The result of From scratch is the same as Guided one layer 1
since they have same candidates. The result of From scratch has a
sharp drop on layers 4. F1 score of From scratch drops from 93.17%
to 71.39%. The gap between Guided and From scratch is over 20% on
this layer and layers ≥ 5. Thus, the sharp drop should attribute to
the error propagation. Comparing to the result of semantic causality
extraction, the error propagate in this task is worse, as the number
of layers is larger. There are researches on alleviating error prop-
agation problem from NER to RE by joint training[22] and novel
tagging [33]. How to alleviate error propagation in nested RE could
be an interesting future work.

Suppose there is a RE method capable of extracting ternary
relationwith configuration {Time}×{Index}×{Value}. The upper-
bound of this method is extracting 63.85% of all relations. If we
get each root of nested structure and analyze its structure, we find
there are 161 kinds of structures in test data annotation. If we want
to use flat relation to represent all of these structures, we need
to define 161 types of relations. Moreover, 43.75% of root nodes
involve four or more entities. That shows RE methods for “flatten”
relation extraction are not suitable for this task.

4.3 Speedup by parallelization
We conduct experiments to test the speedup ratio of the paral-
lelization method we introduce. The model is implemented in Py-
torch [24]. The parallelization implementation follows the method
in Section3.2. In comparison, the serial implementation iterates
through each row of A, T and S to compute one relation at a time,
which is the situation when no parallelization is conducted.

The times spent on updating on 3200 sentences for serial and
parallelized implementations are shown in Figure 7. Times on se-
mantic causality extraction are shown on the left side, and times on
formula extraction are shown on the right side. Serial implemen-
tation may have batch size > 1 because other parts of the model
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Figure 8: Average time of DAG-LSTM (forward computation)
on updating 3200 sentences on semantic causality.

except relation representation module can be computed in batch.
The following discussion focuses on semantic causality extraction,
but applies to formula extraction too. The first observation is that
parallelized implementations are dozens of times faster than serial
implementations. For batch size = 1, the parallelized method is 12
times faster; and for batch size = 32, the parallelized method is 72
times faster. The second observation is that the training time drops
as the batch size increase for both serial and parallelized imple-
mentation. The relative time reduction of parallelized one is more
significant: 83.33% time is saved when batch size increased from 1
to 32.

Because the updating time consists of many parts, such as data
transmission, token representation module, back-propagation, etc.,
the overall time reduction might be a result of other components
rather than relation module. To get a more precise measurement,
we record the exact time used in the forward computation (not in-
clude the back-propagation computation) in relation representation
module. The result for semantic causality is shown in Figure 8 (a).
The huge speedup ratio is more clear. For serial implementation,
the relation representation module computation time takes half of
total update time. And for parallelized implementation, that pro-
portion is much smaller, which means DAG-LSTM is not the time
bottleneck of this model.

The speedup ratio of parallelized implementation is huge because
the number of candidates in one sentence is huge. Figure 8(b) shows
the distribution of sentences for the number of candidates in them.

The average number of candidates is 150.74 per sentence, which
means when batch size = 1, the parallelized DAG-LSTM computes
150 relations in parallel, while the serial one computes 1 relation at
a time for 150 times. And when batch size = 32, this number goes
to 4800. This explains the huge time gap between the serial and
parallelized implementations.

5 RELATEDWORK
Relation Extraction.Most of RE works focus on extracting rela-
tions between two entities [2, 21, 22]. Madaan et al. [19] worked
on extracting relations that contain numbers (like the formula ex-
traction problem in this paper) but stop at only one layer. Distant
supervision is an important research direction in relation extrac-
tion [10, 32]. But in this paper, we focus on supervised relation
extraction. Recently, people are extending the scope of relation
extraction. Ernst et al. [9] proposed a system to harvest high-arity
relationships. In bioinformatics area, the demand for high-arity,
nested relation has been lasting for years [34]. McDonald et al.
proposed algorithm for high-arity relation extraction [20] by dis-
covering binary relation cliques.

People also noticed the incompleteness and information loss for
binary relation extraction during the construction of knowledge
graphs and ontologies like YAGO [25]. So they attached temporal,
geospatial and other prepositional information to relations. Bhutani
et al. [5] studied to extract nested prepositions in open information
extraction problem. Based on result of dependency parsing, they
designed hand-crafted templates, and applied bootstrapping and
pattern learning. They assumed the inter-proposition relations can
be inferred from dependency tree, and the proposition nesting is
carried out by linking simple propositions with rules. These semi-
supervised methods may suffer from low precision problem, but
this phenomenon indicates the demand and necessity of complex
relation for more precise information acquisition. But no systematic
and generic solutions about nested relations were proposed to our
best knowledge.

Tree-LSTM has been used in sentiment analysis [36], semantic re-
latedness classification [26], and traditional binary flatten relation
extraction [22]. These works used Tree-LSTM on parsed depen-
dency trees as input to integrate external knowledges and get a
better representation of sentence or relation pair. However, in our
task, instead of applying Tree-LSTM on a given static structure, we
use it to extract the task specific nested structures.

Structure Extraction. Many researches work on extracting
machine-understandable structures from natural language utter-
ance. Most of them are categorized into semantic parsing. Semantic
parsing is a wide concept [6] which covers works that map a natural
language utterance into a formal representation like Lisp [16] or
logical expressions [28, 29], database queries [4, 6, 16], and UCCA
structures [14]. Most of them utilized Seq2Seq models, or transition-
based models, which had to serialize the output structure into a
sequence. But that may suffer from the situation that the generated
sequences can be invalid [29]. Our proposed solution which directly
generates a structure might provide a new approach in this field.

Speedup The widespread usage of complex neural network in
natural language processing has put forward an urgent demand for
faster training speed. To speed up models with complex structure,
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a framework “Fold” [17] is proposed. It treats the neural network
computation graph as a tree, and groups computation nodes in the
same layer together to compute in parallel. However, learning Fold
changes the way of how to program with TensorFlow, as it intro-
duces many new and complicated concepts. It stopped updating
since Nov. 2017. The method we propose is lightweight which may
be easier to implement and extend.

6 CONCLUSION
In this paper, we extend the concept of relation extraction from flat-
ten relations to nested relations, because the expressions of nested
relation are common in natural language. We propose a formal
formulation of nested relation extraction problem, which covers
the simple binary flatten relation extraction problems, high-arity
relation extraction and nested relation extraction. With the develop-
ment of advanced deep learning models, extracting nested relations
becomes possible. We introduce an Iterative Neural Network that
consists of text, entity, and relation representation modules. The
relation representation module utilize DAG-LSTM to extract com-
plex structured relations. It is able to extract relations layer by layer
iteratively, generating candidates on the fly.

Because the number of candidates is huge in each sentence, the
naive serial implementation of DAG-LSTM is slow. Therefore, we
propose to put relations and candidates in the same layer together,
and compute them in parallel. This method is simple yet very effec-
tive, speeds up the training process by dozens of times.

Two experiments are conducted on two different nested relation
extraction tasks. This model performs well on both tasks. The result
shows an error propagation problem for high layer relations. We
think this might be an interesting future work.
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