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Abstract
In this paper, we revisit the problem of extracting the values
of a given set of key fields from form-like documents. It is
the vital step to support many downstream applications, such
as knowledge base construction, question answering, docu-
ment comprehension and so on. Previous studies ignore the
semantics of the given keys by considering them only as the
class labels, and thus might be incapable to handle zero-shot
keys. Meanwhile, although these models often leverage the
attention mechanism, the learned features might not reflect
the true proxy of explanations on why humans would recog-
nize the value for the key, and thus could not well generalize
to new documents. To address these issues, we propose a Key-
Aware and Trigger-Aware (KATA) extraction model. With the
input key, it explicitly learns two mappings, namely from key
representations to trigger representations and then from trig-
ger representations to values. These two mappings might be
intrinsic and invariant across different keys and documents.
With a large training set automatically constructed based on
the Wikipedia data, we pre-train these two mappings. Experi-
ments with the fine-tuning step to two applications show that
the proposed model achieves more than 70% accuracy for the
extraction of zero-shot keys while previous methods all fail.

Introduction
Recent years have witnessed an increasing interest in ex-
tracting structured information from form-like documents
in various vertical domains, such as invoices, purchase or-
ders, tax forms, etc. [Zhao, Wu, and Wang 2019; Lin et al.
2020; Yu et al. 2019]. In this paper, we revisit the problem
of Key Information Extraction (KIE), namely extracting the
values of a set of keys from given documents [Huang et al.
2019]. For example, in Figure 1 given a set of keys (“tele-
phone”, “total”) and the left receipt document, KIE task aims
to extract the value “03-55423228” for “telephone” and the
value “50.60” for “total”. The extracted structured informa-
tion is essential for a wide range of downstream tasks such
as knowledge base construction, question answering, docu-
ment comprehension and so on [Liu and Croft 2002; Sen Wu
et al. 2018; Geva and Berant 2018].

Most existing studies [Zhao, Wu, and Wang 2019; Lin
et al. 2020; Yu et al. 2019] pre-define each key to be ex-
tracted as a class label, and then predict the class label of
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Figure 1: Examples of two labeled receipt documents. The
green box, blue box and red box represent key, trigger and
value, respectively.

each word in the document. However, such standard proto-
col might be incapable to handle the keys that are omitted
from the training set, since these zero-shot keys correspond
to no training instances. Meanwhile, in real-world produc-
tion, the amount of keys needed to extract might be indeed
massive, and thus labeling large-scale training data for each
key is both labor-intensive and unscalable [Li, Min, and Fu
2019]. In this scenario, we want to learn key-invariant fea-
ture representation such that the model can generalize to
zero-shot keys without additional annotation cost.

On the other hand, when a human searches for the value of
a given key from a document, she always recognizes certain
words or phrases that act as cues in advance. For instance,
“total payable” and “total rounded” are distinct cue phrases
of the same key “total” (shown in Figure 1). Then, the val-
ues “50.60” and “13.10” are easy to extract since they locate
in the same row as the cue phrase according to the implicit
tabular format. For clarity, we call such cue phrase as trig-
ger, which can be defined as continuous or discontinuous
words in the document that explain the key suitably and in-
struct the proper position of the value. Note that, the trigger
should be a sufficient evidence to recognize the value even
if the value is replaced with some random words. Previous
studies often leverage the attention mechanism for more ac-



curate extraction. To explore whether the learned features
in previous models focus on the trigger, we mask the trig-
ger and let the models predict again. However, the results in
Section show that these models can still extract the correct
value. That is to say, the previous models do not depend on
the trigger to recognize the value, thus cannot reflect the true
proxy of explanations on why humans recognize the value.

To address these issues, we propose a novel two-stage ar-
chitecture, named Key-Aware and Trigger-Aware (KATA),
for this task. Since no labeled instances to the zero-shot keys
are available, some auxiliary information is needed to repre-
sent these keys [Wang et al. 2019]. We assume that the words
contained in each given key give a concise and precise de-
scription for the content to extract. Then, we treat each key
not simply as an atomic label, but instead represent it as a se-
quence of words such that the semantic and visual relation-
ships between the given key and the words in the document
can be explicitly learned. For example, for the left receipt in
Figure 1 with the semantics in the given key “telephone” it
might be easier to recognize its true value “03-55423228”.
Then, with the key as the input, this problem is transformed
as a 0/1 classification task over the words in a document,
resulting in that the training data with various keys from dif-
ferent domains can be collaboratively learned.

Furthermore, inspired by how humans recognize the
value, the KATA model explicitly learns two mappings,
namely from key representations to trigger representa-
tions and then from trigger representations to target val-
ues. Specifically, KATA extracts the trigger explicitly in the
first stage (key-to-trigger mapping) and recognizes the value
based on the predicted trigger in the second stage (trigger-
to-value mapping). Note that some keys may not have the
corresponding triggers in the document. For example, in the
right receipt in Figure 1 the value “18/03/2018” to the key
“date” does not have trigger in the document since it has pro-
vided sufficient discriminative information. Thus, we also
add key as the auxiliary input in the second stage to let the
model learn the direct mapping from key representations to
values. The reason why KATA could accurately recognize
zero-shot keys might be that these learned mappings are in-
trinsic and invariant across different keys and documents.

Although we propose the KATA model to address the
aforementioned issues, then another question is how to an-
notate triggers and values for large-scale documents to train
this model. Wikipedia, the largest online encyclopedia to
date, is widely used for distant supervision and model pre-
training in many existing studies [Nguyen and Moschitti
2011; Chen et al. 2017]. We discover that Wikipedia Infobox,
frequently used to list some facts as a table of attribute-
value pairs [Lehmann et al. 2015], can be tailored in this
work. Thus, we automatically construct Wikipedia Infobox
datasets to pre-train these two mentioned mappings.

Based on two target datasets - the SROIE dataset contain-
ing 972 English documents and the Grater dataset contain-
ing 4,032 Chinese documents, we compare the pre-trained
KATA model and other baseline models. The empirical ex-
periment demonstrates that KATA achieves the best 0.7069
and 0.7339 accuracy for extracting zero-shot keys in the
SROIE and Grater dataset, respectively, while all the pre-

vious methods get close to 0% accuracy. Moreover, KATA
also obtains accuracy improvement on non-zero-shot keys
compared with baseline models. We also demonstrate that
removing index position embeddings in the model backbone
and using parameters with more pre-training epochs for ini-
tialization will improve the accuracy of extraction.

Our contributions in this paper are as follows:
• To the best of our knowledge, this paper is the first work

to extract the values of both zero-shot and non-zero-shot
keys in form-like documents.

• We propose a novel two-stage architecture to employ the
semantics of the given keys and predict triggers explicitly.

• We construct the large-scale labeled datasets from
Wikipedia Infobox to pre-train the model and fine-tune it
on two target datasets. The experimental results show that
the proposed KATA model obtains great improvement in
accuracy compared with baseline models.

Key-Aware and Trigger-Aware Information
Extraction

In this section, we introduce basic concepts and their nota-
tions in Section . Then we explain why and how we make
key aware and trigger aware in Section and Section . Fi-
nally, we present specific modules in KATA in Section and
how to pre-train KATA in Section .

Problem Formulation
We first denote Kn = {ki}Nn

i=1 and Kz = {ki}Nz
i=1 as the set

of non-zero-shot keys and zero-shot keys, respectively. Note
thatKn∩Kz = ∅. Then, we define the labeled training set as
a collection of 4-tuples, Dtr = {(ki, di, ti, vi)|ki ∈ Kn}Ntr

i=1
and the unlabeled test set as a collection of 2-tuples, Dte =
{(ki, di)|ki ∈ Kn ∪ Kz}Nte

i=1. Here ki, di, ti, vi denote key,
document, trigger, and value, respectively. The question now
is to learn a model that is trained with the training set Dtr,
but can still recognizes the value of key in the test set Dte,
regardless of the key is zero-shot or non-zero-shot.

Key-Aware Extraction
Most previous studies [Zhao, Wu, and Wang 2019; Lin et al.
2020; Yu et al. 2019] pre-define a set of keys by considering
them only as the atomic class. Taking LayoutLM [Xu et al.
2020a] as an example, it creates text embedding and 2-D
position embedding of each word in the document, where 2-
D position embedding is used to model the relative spatial
position. Then, LayoutLM employs a multi-layers Trans-
former [Vaswani et al. 2017] to capture features and uses
SoftMax to classify each word into a class label. However,
such classic solution fails to predict the keys that are omitted
from the training set, since these zero-shot keys correspond
to no training instances.

To enable the model to predict these zero-shot keys, some
auxiliary information is needed to represent them [Wang
et al. 2019]. To this end, instead of treating each key as sim-
ply an atomic label, we characterize them with the semantic
of each key, which is defined as a sequence of words that
can be regarded as a concise but precise description for the
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Figure 2: Architecture of the proposed KATA model. The
left part presents an example of receipt and the right part
presents the trigger extraction module and value extraction
module in KATA based on this example.

content to extract. For example, in Figure 2 to extract the
information about “total consumption in this market”, we
use string “total” to represent the name of the key. Then, the
model predicts “50.60” as the value of “total”, which can be
transformed as a 0/1 classification task over the words in the
document. In other words, the input key informs the model
what information to extract and the model can recognize the
value via analyzing the semantic and visual relationship be-
tween the given key and the words in the document.

Trigger-Aware Extraction
When a human searches for the value of a given key from
a document, she always recognizes some continuous or dis-
continuous words that act as cues in advance. We call such
cue phrase as trigger, which explains the key suitably and
instructs the proper position of the value. For example, in
Figure 2 to extract the value of “total”, the phrase “total
payable” acts as the trigger since it is the most proper phrase
in the document to explain “total”.

Then, we aim to explore whether the previous models fo-
cus on the trigger. Following [Zeiler and Fergus 2014], for
a key k and a document d, we mask the trigger t of k and
let the model predict the value again. Here the content of the
masked words in trigger is replaced with “[UNKNOWN]”
and the position of the words is retained. Figure 4 shows the
results before and after masking triggers of the key “total”.
LayoutLM only obtains 0.0457 F1 decrease, which means
that LayoutLM does not depend on the trigger, but might
depend on integral layout features to recognize the value.

To make the model focus on the trigger, the proposed
KATA model aims to explicitly extract trigger and recog-
nizes the value based on the predicted trigger. Recall the
above example, “total payable” acts as the trigger of the
key “total” since they have similar semantic representation.
Then, KATA recognizes “50.60” as the value of “total” since
they locate in the same row according to implicit tabular for-
mat. At a high-level, KATA learns two mappings, namely

key-to-trigger and trigger-to-value. Learning key-to-trigger
mapping only relies on the semantic relationship between
the key and trigger and irrespective of where the trigger lo-
cates on the page. Learning trigger-to-value mapping de-
pends on both the semantic relationship and the relative,
yet not absolute, position relationship between trigger and
value. Thus, these two mappings might be intrinsic and in-
variant across different keys and documents in general.

Formally, we can expand the probability P (v|d, k)
through the total probability formula as follows,

P (v|d, k) =
∑
t

P (t|d, k) · P (v|d, k, t), (1)

where, P (t|d, k) and P (v|d, k, t) represent key-to-trigger
mapping and trigger-to-value mapping, respectively. After-
wards, we use two attention-based modules to model these
two probabilities or mappings.

Trigger Extraction Stage and Value Extraction
Stage
Figure 2 depicts the architecture of the proposed KATA
model with an example of a receipt document. KATA is
composed of two stages, namely trigger extraction stage and
value extraction stage.

The trigger extraction stage receives a given key k and a
document d, and then extracts the trigger t from the words
in this document. This process can be regarded as binary
classification (“Trigger” or “None”) over the words in the
document. Following BERT framework [Devlin et al. 2019],
we pack the words in the key and the words in the docu-
ment together, then tokenize them into one token sequence.
To make the model differentiate the key and document, we
add a token “[SEP]” between them and assign a learned seg-
ment embedding to each token indicating whether it belongs
to the key or document. To represent the spatial position of
each token, we assign 2-D position embedding to each token
following LayoutLM [Xu et al. 2020a].

The value extraction stage receives a key k, a document
d, the predicted trigger t, and then recognizes the value v
from the words in this document. This process can also be
regarded as binary classification (“Value” or “None”) over
the words in the document. Note that the key is added as
auxiliary information to the value extraction stage once ex-
tracting incorrect triggers or no trigger exists in the previ-
ous stage. Since the trigger is predicted explicitly in the first
stage, we allocate learned trigger embedding to each token
indicating whether it belongs to a trigger or not.

In both trigger extraction and value extraction stage, the
input representation of each token is constructed by sum-
ming all the corresponding embeddings. Then, a multi-
layers Transformer [Vaswani et al. 2017] is used to extract
the interaction features among tokens. The structure of the
Transformer is the same but the parameters are different in
two stages. Finally, we use SoftMax to classify each token
and use cross-entropy loss as the objective function.

Pre-training KATA based on Wikipedia
In this section, we use Wikipedia, the largest online encyclo-
pedia to date, to pre-train two mentioned mappings for the



KATA model. Wikipedia Infobox is frequently used to list
an article’s most relevant facts as a table of attribute-value
pairs on Wikipedia page [Lehmann et al. 2015]. To obtain
content and position information of each word in Wikipedia
Infobox, we extract the Infobox section from the original
Wikipedia page, re-render this section to a PDF document
via wkhtmltopdf 1, and then apply PDFMiner2 to parse the
PDF document.

To label the triggers and values on corresponding
words, we employ the RDF statements data from DBpe-
dia [Lehmann et al. 2015]. Here, RDF statements consist
of a large number of RDF triplets (d, c, v), where d, c and
v represent document id, ontology class and value, respec-
tively. In detail, DBpedia develops an ontology concept,
which consists of thousands of hierarchical classes, and
maps Wikipedia Infobox attributes to one of the class la-
bels by community effort. Based on this data, we assume
that an ontology class c and a key k are mutually exchange-
able. Then, we assign a label “Value” to the words in the
documents that have exact string or link matching with v.
Then, we assume that the trigger and its value always locate
in the same row of the Infobox table. Thus, we only keep
those Infobox tables with only two columns. For each row
in the Infobox table, if one value locates at the second cell,
we set the words in the first cell as its corresponding trigger.
Finally, we can obtain the content, position and annotation
information of each word in the document.

Based on the above process, we automatically construct
the Wikipedia Infobox dataset to pre-train the trigger extrac-
tion module and value extraction module separately. Note
that we use labeled triggers as the input to train the value ex-
traction module to prevent the prediction errors in the trig-
ger extraction stage. Here, we emphasize that the trigger-
value pairs in this pre-trained data always have left-to-right
structure, which has limitations to handle the pairs with top-
bottom or other complex structures. Although the Wikipedia
Infobox dataset is enough to handle two target datasets in
this paper since most trigger-value pairs in these two datasets
are left-to-right, we aim to add more pre-trained pairs with
abundant layout structure, such as from Wikitable, to serve a
broader situation in the future.

Experiments
Datasets
In this paper, we use two target KIE datasets, a publicly ac-
cessible SROIE dataset3 and a private Grater dataset, for
fine-tuning and evaluation. The documents are English re-
ceipts and invoices in the SROIE dataset and Chinese bank
statements in the Grater dataset. Therefore, we construct two
Wiki-Infobox datasets in English and Chinese, called En-
Wiki-Infobox and Zh-Wiki-Infobox, for pre-training KATA.
The number of keys, documents, and key-value pairs of each
dataset is listed in Table 1. The Annotation of triggers in the
SROIE and Grater dataset does not incur significant addi-
tional effort because the triggers are typically short phrases.

1https://wkhtmltopdf.org/
2https://pypi.org/project/pdfminer/
3https://rrc.cvc.uab.es/?ch=13

dataset #key #document #key-value pair
Zh-Wiki-Infobox 6,151 281,281 897,520
En-Wiki-Infobox 7,370 398,467 1,238,281
Grater 24 4,032 18,825
SROIE 6 972 5,505

Table 1: The statistic of different datasets.
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Figure 3: The distribution on the number of different trigger
expressions for each key in different dataset. The blue table
shows the example of the correspondence of key and trigger.

Recall the examples in Figure 1, “total payable” and “to-
tal rounded” are distinct trigger expressions for the same
key “total”. Hence, we count the number of different trigger
expressions for each key and draw its distribution for four
datasets in Figure 3. We observe that around 40% keys cor-
respond to more than one trigger expressions in two Wiki-
Infobox datasets, and this ratio increases to around 60% and
70% in the SROIE and Grater dataset, respectively. This
phenomenon shows that key-to-trigger mapping is one-to-
many mapping. For each key, the mapping will be more dif-
ficult to learn along with the number of trigger expressions
increases, according to the results in Section .

In consideration of the zero-shot learning, we select sev-
eral keys as zero-shot keys and remove their corresponding
key-value pairs from the training set but retain the pairs in
the test set. To make the difficulty of the selected keys aver-
age, we select some keys with small number of trigger ex-
pressions and some keys with large number of trigger ex-
pressions. Note that the SROIE dataset includes 2 zero-shot
keys (listed in Table 3) and 4 non-zero-shot keys (“com-
pany”, “address”, “date” and “total”). The Grater dataset in-
cludes 8 zero-shot keys (listed in Table 3) and 16 non-zero-
shot keys (e.g. “account”, “total credit”, “currency”, etc.).

Following [Xu et al. 2020b], the evaluation metric is the
exact match of the value recognition results in both SROIE
and Grater datasets. That is to say, value is predicted cor-
rectly when all the words in this value are exactly the same
as the ground-truth.

Baselines and Proposed Models
• BERT [Devlin et al. 2019]. BERT model classifies each

word in the document as one of the pre-defined keys or



row method
the SROIE dataset the Grater dataset

zero-shot keys non-zero-shot keys zero-shot keys non-zero-shot keys
P R F1 P R F1 P R F1 P R F1

1 BERT [Devlin et al. 2019] 0 0 0 0.9099 0.9099 0.9099 0 0 0 0.9986 0.9965 0.9976
2 LayoutLM [Xu et al. 2020b] 0 0 0 0.9460 0.9460 0.9460 0 0 0 1.0000 1.0000 1.0000
3 KA-bert 0.1043 0.1000 0.1021 0.9373 0.9373 0.9373 0.2431 0.2422 0.2426 0.9993 0.9979 0.9986
4 KA-wiki 0.6468 0.5961 0.6204 0.9469 0.9430 0.9449 0.3768 0.3702 0.3735 1.0000 1.0000 1.0000
5 KATA-bert 0.0649 0.0471 0.0545 0.9366 0.9382 0.9347 0.3692 0.2491 0.2975 0.9993 0.9993 0.9993
6 KATA-wiki 0.7678 0.6549 0.7069 0.9483 0.9457 0.9470 0.7378 0.7301 0.7339 1.0000 1.0000 1.0000
7 KATA-wiki w/ index embedding 0.6569 0.6000 0.6283 0.9455 0.9423 0.9439 0.6809 0.6644 0.6725 1.0000 1.0000 1.0000
8 KATA-wiki w/o fine-tuning 0.5116 0.4314 0.4681 0.1106 0.0502 0.0691 0.1322 0.0796 0.0994 0.0963 0.0594 0.0735

Table 2: Comparing KATA with baseline models.

data zero-shot
keys

#trigger trigger-F1 value-F1

SROIE cash 36 0.5689 0.6730
telephone 17 0.8537 0.7500

Grater

organization 5 0.7059 0.6525
balance in
previous page

3 0.6538 0.8269

subject 2 0.4783 0.8696
card number 2 0.4375 0.9375
balance 1 1.0000 0.8750
unit 1 0.9804 0.5743
print method 1 1.0000 1.0000
credit count 1 1.0000 1.0000

Table 3: Results of different zero-shot keys in KATA.

“None”. Note that BERT cannot work for zero-shot keys
since there are no training samples for these keys.

• LayoutLM [Devlin et al. 2019]. Compared with the
BERT model, the LayoutLM model adds 2-D position
embeddings to each word and is pre-trained on a large-
scale dataset. LayoutLM also considers this problem as
multi-classification and cannot work for zero-shot keys.

• KA. Our proposed key-aware extraction model (KA) re-
ceives the given key as input and then directly classifies
each word in the document as “Value” or “None”. There
are two variants, called KA-bert and KA-wiki. KA-bert
uses the pre-trained BERT parameters for initialization
and KA-wiki uses the parameters pre-trained on En-Wiki-
Infobox for fine-tuning the SROIE dataset and Zh-Wiki-
Infobox for fine-tuning the Grater dataset.

• KATA. Our proposed KATA model is a two-stage model.
With the key as input, KATA first extracts the trigger and
then recognizes the value based on the predicted trigger.
There are also two variants, called KATA-bert and KATA-
wiki, which are similar to KA above.

Experimental Results
In this section, we first compare the overall performance
of the baseline models and the KATA model. Then, we do
ablation studies to evaluate the influence of each module
in KATA. Finally, we compare the performance of the pre-
trained parameters with different training epochs in KATA.

To compare the accuracy for zero-shot keys of baseline
models and KATA, we present the results in row 1, 2 and

Figure 4: Comparing the F1 value of key “total” for retaining
and masking the trigger of “total” in different models.

6 of Table 2. KATA-wiki model obtains 0.7069 F1 value in
the SROIE dataset and 0.7339 F1 value in the Grater dataset
for zero-shot keys. However, previous models fail to pre-
dict zero-shot keys in both datasets since there are no train-
ing samples for these keys. In detail, Table 3 demonstrates
the trigger-F1 and value-F1 for each zero-shot key. Over-
all, the keys with less number of trigger expressions obtain
higher accuracy since low diversity of trigger expressions
means less difficulty. Even though, for some zero-shot keys
that correspond to tens of trigger expressions in the SROIE
dataset, KATA also obtains more than 0.6 F1 value. Note
that, there is a special case “unit”. As shown in Figure 5, the
predicted value of key “unit” includes redundant informa-
tion sometimes and we further analyze it in Section . Over-
all, the KATA-wiki model has capability to recognize the
value of zero-shot keys.

Meanwhile, we compare the accuracy for non-zero-shot
keys of baseline models and KATA. In the SROIE dataset,
BERT, LayoutLM, and KATA-wiki model obtain 0.9099,
0.9460, and 0.9470 F1 value respectively for non-zero-shot
keys. In the Grater dataset, BERT, LayoutLM, and KATA-
wiki model obtain 0.9976, 1.0000, and 1.0000 F1 value re-
spectively for non-zero-shot keys. That is to say, the KATA-
wiki model also obtains comparable performance on non-
zero-shot keys with other baselines models. Note that, most
models obtain close to 1.0 F1 value for non-zero-shot keys in
the Grater dataset. The reason is that the model is easy to fit
based on some training samples, due to the simple document
layout structure. To sum up, compared with other baseline
models, the proposed KATA-wiki model obtains great im-
provement in accuracy for zero-shot keys and comparable
performance for non-zero-shot keys.

To explore the influence of pre-trained parameters, we



row method
the SROIE dataset the Grater dataset

zero-shot keys non-zero-shot keys zero-shot keys non-zero-shot keys
P R F1 P R F1 P R F1 P R F1

1 KATA-wiki (10k batches) 0.3224 0.2510 0.2822 0.9394 0.9355 0.9375 0.4948 0.4948 0.4948 1.0000 1.0000 1.0000
2 KATA-wiki (20k batches) 0.4082 0.3314 0.3658 0.9483 0.9457 0.9470 0.5261 0.5225 0.5243 1.0000 1.0000 1.0000
3 KATA-wiki (30k batches) 0.6522 0.5588 0.6019 0.9467 0.9396 0.9431 0.5725 0.5467 0.5593 0.9993 0.9993 0.9993
4 KATA-wiki (1 epoch) 0.5952 0.5882 0.5917 0.9460 0.9396 0.9428 0.6125 0.6125 0.6125 1.0000 1.0000 1.0000
5 KATA-wiki (2 epochs) 0.7028 0.6490 0.6748 0.9488 0.9437 0.9463 0.6401 0.6401 0.6401 1.0000 1.0000 1.0000
6 KATA-wiki (3 epochs) 0.7678 0.6549 0.7067 0.9429 0.9430 0.9416 0.7378 0.7301 0.7339 1.0000 1.0000 1.0000

Table 4: Comparing different epochs of pre-trained parameters in KATA.

present the results in row 3, 4 and row 5, 6 of Table 2.
For KA, using pre-trained Wiki-Infobox parameters for ini-
tialization obtains 0.5183 and 0.0076 F1 improvement for
zero-shot keys and non-zero-shot keys in the SROIE dataset,
0.1309 and 0.0014 F1 improvement for zero-shot keys and
non-zero-shot keys in the Grater dataset. For KATA, using
pre-trained Wiki-Infobox parameters for initialization ob-
tains 0.6524 and 0.0123 F1 improvement for zero-shot keys
and non-zero-shot keys in the SROIE dataset, 0.4364 and
0.0007 F1 improvement for zero-shot keys and non-zero-
shot keys in the Grater dataset. That is to say, for both KA
and KATA model, compared with using BERT parameters,
using pre-trained Wiki-Infobox parameters for initialization
obtains great improvement on zero-shot keys and also ob-
tains improvement on non-zero-shot keys.

KATA explicitly predicts trigger to mimic how humans
recognize the value. To explore the influence of this pro-
cess, we present the results in row 4 and 6 of Table 2. Com-
pared with KA-bert, KATA-wiki obtains 0.0865 and 0.3604
F1 improvement for zero-shot keys in the SROIE dataset and
Grater dataset, and 0.0021 F1 improvement for non-zero-
shot keys in the SROIE dataset. That is to say, explicitly pre-
dicting trigger obtains great improvement for zero-shot keys
nd also obtains improvement on non-zero-shot keys.

Furthermore, to explore whether the proposed model fo-
cuses on trigger to recognize value, we mask the trigger and
then let the model predict the value again (as mentioned
in Section ). Figure 4 shows the results before and after
masking triggers of the key “total” in different models. Lay-
outLM only obtains 0.0457 F1 decrease, which means that
LayoutLM does not depend on the trigger to recognize the
value. With the key as input, KA obtains 0.6763 F1 decrease,
which means that KA pays more attention to the triggers. By
explicitly predicting triggers, KATA obtains 0.8547 F1 de-
crease. That is to say, the learned attention in KATA reflects
the true proxy of explanations on how humans would recog-
nize the value via the trigger.

LayoutLM packs the words in the document as an or-
dered sequence and assigns a learned index embedding to
characterize the position of each word. Conventional top-
bottom left-to-right order is used to represent the order of
words [Meunier 2005], however, cannot always agree with
the true reading order of the document. Thus, to explore
the influence of incorrect index embedding, we present the
results in row 6 and 7 of Table 2. Compared with KATA-
wiki, adding index position embeddings obtains 0.0786 and
0.0614 F1 decrease for zero-shot keys in the SROIE dataset

and Grater dataset, and 0.0031 F1 decrease for non-zero-
shot keys in the SROIE dataset. That is to say, removing in-
dex embedding obtains improvement in accuracy for both
zero-shot keys and non-zero-shot keys. Therefore, we re-
move index embedding of each token in the KATA model.

We directly evaluate the results based on pre-trained
Wiki-Infobox parameters without fine-tuning and present
the results in row 6 and 8 of Table 2. Apparently, testing
without fine-tuning obtains quite bad accuracy. It demon-
strates that the documents in two Wiki-Infobox datasets
have a different distribution with the documents in two KIE
datasets. Nevertheless, using pre-trained Wiki-Infobox pa-
rameters for initialization still obtains great improvement in
accuracy for both zero-shot and non-zero-shot keys.

To compare the accuracy of pre-trained Wiki-Infobox pa-
rameters with different training epochs, we compare 6 pre-
trained parameters and each of them is 10,000 batches,
20,000 batches, 30,000 batches, 1 epoch, 2 epochs, and 3
epochs (as shown in Table 4). In general, the overall accu-
racy is monotonically increased as more batches and epochs
are trained during the pre-training step. Therefore, we use
parameters with more pre-training epochs for initialization
in the KATA model.

Case Study and Limitations
We give some examples of correct-predicted and incorrect-
predicted results when predicting zero-shot key “cash” from
the SROIE dataset in Figure 5. For SROIE A and SROIE
B page, KATA correctly predicts the triggers and values.
Note that, although the trigger in SROIE B page is “pay-
ment”, which is the synonyms of key “cash”, KATA can still
predict correctly. However, for SROIE C page, KATA finds
out incorrect trigger-value pair “cash-receipt” and omits the
true pair “MASTER-165.00”. One reason for this limitation
might be that we do not explicitly limit the type of value,
thus KATA predicts “receipt” as value by mistake. Another
reason might be that KATA only receives one type of key
expression as input, which neglects “MASTER” as the true
trigger. For Grater A page, although KATA extracts the cor-
rect trigger of key “unit”, it includes redundant information
“date”. The reason might be that KATA never sees “unit”
in pre-training and training data, thus it has no knowledge
about the feature of the value. Thus KATA may guess that
the value will appear following the trigger “unit”. However,
the true value “RMB” has close distance with other redun-
dant information, thus the predicted value includes this re-
dundant information. If the model limits the type of value, it
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Figure 5: Examples of different documents. The green box
represents key. The blue-solid, blue-dashed, red-solid and
red-dashed boxes represent the ground-truth trigger, pre-
dicted trigger, ground-truth value and predicted value.

will predict correctly. Therefore, we have two ideas to tackle
these limitations. On one hand, inspired with [Majumder
et al. 2020], we can filter some wrong values by limiting
the type of the target value. On the other hand, we except
the model can integrate several distinct key expressions as
input to adapt different trigger expressions for one key.

Experimental Conclusion
In conclusion, compared with baseline models, KATA ob-
tains great improvement in accuracy for zero-shot keys and
comparable accuracy for non-zero-shot keys. To obtain the
best performance of KATA, we use pre-trained 3-epochs
Wiki-Infobox parameters for initialization, explicitly predict
trigger, and remove index position embeddings.

Related Work
Key Information Extraction
Recently, significant studies have focused on informa-
tion extraction from unstructured or semi-structured data,
in the form of plain texts, digital documents, and web
pages [Nanyun et al. 2017; Ferrara et al. 2014; Palm,
Winther, and Laws 2017]. Plain texts mainly refer to natural
language sentences, which only contain textual information,
while digital documents and web pages contain both textual
and visual information.

In this paper we focus on information extraction from
digital documents or web pages. Early works usually re-
quire a great number of human-crafted rules or patterns,
which is only used for particular documents and difficult
to generalize [Medvet, Bartoli, and Davanzo 2011; Gul-
hane et al. 2011; Gentile, Zhang, and Ciravegna 2013]. To
eliminate rigorous rules and patterns, recent studies deploy
learning-based methods via various popular techniques such
as CNNs, GCNs, and Transformers. Katti et. al. [Katti et al.
2018] and Zhao et. al. [Zhao, Wu, and Wang 2019] employ
CNNs to extract key information from PDF documents. Liu

et. al. [Liu et al. 2019] and Yu et. al. [Yu et al. 2020] ap-
ply GCN to extract features upon the topological of every
word, and use Bi-LSTM and CRF to classify each word an
information category. The difference is that Yu’s model uses
another CNN to extract visual features on the document im-
age, and concatenate this feature with the GCN feature. Ma-
jumder et. al. [Majumder et al. 2020] use attention-based
network to extract textual and visual features of neighbour
words and classify the key category of the target. Lin et.
al. [Lin et al. 2020] focus on structured information extrac-
tion on web documents. They use CNN and Bi-LSTM to
predict each word a class label in the first stage, and then
another neural network is used to captures longer range dis-
tance and semantic relatedness between the information ex-
tracted in the previous stage. Large-scale pre-training mod-
els, like BERT, become the state-of-the-art techniques on
challenging NLP tasks. To employ this idea on information
extraction in digital documents, Xu et. al. [Xu et al. 2020b]
propose LayoutLM to jointly model the interaction between
text and layout information across document images. Lay-
outLM achieves great improvements in the KIE tasks.

Zero Shot Learning
Zero-shot learning is a promising learning paradigm pro-
posed by Palatucci et. al. [Palatucci et al. 2009], where the
possible values for the class Y include values that have
been omitted from the training examples. Recently, exten-
sive works aim to tackle zero-shot learning in various tasks,
such as relation extraction, entity extraction, image recog-
nition, etc. [Palatucci et al. 2009; Pasupat and Liang 2014;
Levy et al. 2017; Xian et al. 2018; Lockard et al. 2020].

Pasupat et. al. [Pasupat and Liang 2014] consider a zero-
shot task of extracting entities from web pages. The tra-
ditional entity extraction task requires information such as
seed entities and then extracts the target entities that are
similar to these seeds. Differently, Pasupat’s model uses a
natural language query to replace these seed entities, and
classifies each candidate words as “entity” or “None”. Levy
et. al. [Levy et al. 2017] aim to extract relation in natu-
ral language sentences that are only specified at test-time.
To this end, they use question templates to replace the
given knowledge-base relation and use distant supervision
for a relatively large number of relations from Wikipedia.
Lockard et. al. [Lockard et al. 2020] propose a solution for
zero-shot open-domain relation extraction from web pages
in the unseen website and unseen vertical. To generalize to
these never-before-seen templates and topics, they propose
a graph neural network model that encodes semantic textual
and visual patterns across different training websites.

Conclusion
In this paper, we focus on extracting the values of zero-
shot keys in form-like documents. We propose a novel ex-
traction model, named KATA. With the input key, it ex-
plicitly learns key-to-trigger and trigger-to-value mappings.
We also automatically construct two datasets for pre-training
two mappings. The experiments on two target KIE datasets
demonstrate the effectiveness of KATA on extracting zero-
shot keys.
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