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Abstract
Recommendation systems are effective tools for information filter-

ing and discovery. These systems are widely applied across various

consumer sectors and hold significant potential for applications in

professional domains to enhance work efficiency. However, sup-

porting decision-making in professional contexts requires not only

providing recommendation results but also offering explanations

to persuade users to adopt the suggestions. Taking the task in the

primary bondmarket as an example, where sales staff seek potential

investors for bonds, this paper presents the development and de-

ployment of a recommendation system designed for a professional

setting. The system provides a set of key features as explanations

for its recommendations. In this process, we observe that current

explanation methods may select redundant and spurious features,

which can undermine the persuasive impact of the explanations.

To address this issue, we propose a method named ConciseExplain,

which leverages a mask training strategy and gradient descent to

directly identify a concise set of features. We conduct experiments

on real-world and synthetic datasets. Our method achieves relative
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improvements of 6.1% and 12.4% over the best-performing base-

line on redundant and spurious metrics, respectively. Our method

also outperforms the baseline method in online manual evalua-

tions. Moreover, during the one-year official deployment of our

system at China Securities Co., Ltd. (a leading brokerage firm in

China), we observed a continuous improvement in the accuracy of

the recommendation system. This suggests that, with concise ex-

planations, a positive feedback loop might be established between

recommendation outcomes and investment decisions.
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1 Introduction
Recommendation Systems (RS) filter items that may be of interest to

users, addressing the problem of information overload when users

are faced with an overwhelming number of items. While RSs are
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predominantly deployed in consumer markets such as e-commerce

platforms and short video services, applying RS to professional

domains is a promising direction that could significantly enhance

work efficiency. However, decision-making in professional domains

is much more critical. It is necessary to explain the recommenda-

tions to convince users to adopt them.

We take the investor-seeking task in the primary bond market

as an exemplary scenario to demonstrate the demand for RS in

professional domains and the necessity of explanations of recom-

mendation. In the primary bond market, brokerage firms assist

companies (issuers) in issuing bonds to raise funds. A bond must

receive sufficient bidding amounts from investors on its issuing

day to be successfully issued; otherwise, the issuance fails. There-

fore, ahead of the issuing day, the sales staff of brokerage firms

endeavor to inform potential investors about the bond’s informa-

tion. Investors who do not receive information about a particular

bond are unlikely to invest in it. This is because a brokerage firm

releases dozens of new bonds daily, while the market sees hundreds,

investors heavily rely on sales staff from various firms to obtain

bond details to find interested bonds.

However, seeking potential investors is challenging for sales

staff. First, predicting whether an investor will be interested in a

bond is difficult: each bond has its unique characteristics, such as

the issuer’s industry and region, and the bond’s interest rate. Each

investor also has distinct features, such as historical investment

preferences. Sales staff must analyze both the bond’s and the in-

vestor’s features to infer whether the investor might be interested

in and willing to invest in a particular bond. Second, the number of

potential investors is vast, often numbering in the thousands. Man-

ually matching a bond with suitable investors is labor-intensive.

Although challenging, sales staff have to comprehensively identify

all potential investors while being selective ( even conservative)

to inquiries investors because recommending too many unsuitable

bonds to investors can seriously harm their reputation and hinder

future cooperation.

This problem is akin to selecting products from a large inventory

that a customer might purchase, making it a particularly suitable

application for an RS. However, in our task, adopting a recommen-

dation is a serious decision because it implies spending significant

time contacting investors and engaging in in-depth communication.

In the long run, it may also undermine the investor’s perception of

the sales staff’s professional competence. Thus, one unique aspect

of using an RS in this task is the need to justify the recommenda-

tions by providing explanations to persuade the sales staff.

We developed and deployed an RS for this task. Figure 1 shows

a screenshot of the system (anonymized), which provides details

of investor recommendations along with explanations. The left

panel displays bonds that are about to be issued. When a sales

staff member clicks on a bond, the right panel shows a list of rec-

ommended investors accompanied by corresponding explanations.

Each explanation is a set of tags displayed in colored tags. Blue,

yellow, and green boxes represent three different predefined cate-

gories of recommendation reasons: namely investor preference for

bonds, investor attributes, and investor ability, respectively. Users

can hover over the tags to view their full descriptions. For instance,

the first two tags of Explanation1 for Recommendation1, namely

“Invest Recently” and “Daily Consumption,” indicate that the in-

vestor has recently made frequent investments (suggesting they

may have abundant funds in the near future) and that they prefer

bonds issued by companies in Daily Consumption sector.

This paper introduces the model behind this system which gen-

erates both recommendation results and explanations. In this task,

the input features for recommendation are interpretable, meaning

that each feature has a clear, distinct meaning representing some

aspect of either the investor or the bond. So, we focus on designing

methods to select a subset of these features as explanations for the

recommendations, which are the tags shown in Figure 1.

We identify two types of problems within the features selected

by current feature-based explanation methods such as LIME [23],

SHAP [19], and IG [25]. The first problem is misleading or spurious
features. For example, when the RS recommends an investor for

a bond issued by a listed company, the explanation provided by

existing methods might mistakenly select a feature indicating that

the investor prefers unlisted companies. Such explanations are not

only unconvincing but could also confuse users, discouraging them

from adopting the recommendations.

The second problem involves redundant features. For instance,
in our RS, overlapping features like “Invest Frequency Last Year”

and “Invest Frequency Last Month” are intentionally engineered

to improve recommendation performance. If these are important

features to recommend, existing methods tend to select both for the

explanation. This is reasonable for the model interpretation task

(aiming to explain how the model makes predictions), as these fea-
tures contribute similarly to the model’s decision. However, in our

system, which aims to persuade users to adopt the recommendation,

presenting both to users results in redundant information. Elimi-

nating such redundancy and presenting only one of these features

allows space for other features to provide more diverse information

for persuasive explanations. These two problems are likely due

to correlation among input features while existing methods like

Shapley Value-based methods [19] evaluate the importance of each

feature respectively. Details are discussed in Section 3.

To address these challenges, we propose ConciseExplain, a
method to reduce redundant and spurious features in explanation

feature sets. The proposed method derives from identifying a set

of features that maximizes the expected probability that investors

with this feature set will bid on a bond. We train a model to estimate

the bidding probability given a subset of features, thereby consid-

ering selected features collectively. A gradient-based optimization

method is then used on this model to identify a subset of size 𝑘 that

maximizes the probability.

The proposed system has been deployed at China Securities Co.,

Ltd. (CSC), a leading brokerage firm in China, since March 2023.

Experimental results indicate that our method outperforms the best-

performing baseline methods, achieving relative improvements of

6.1% in rationality and 12.4% in diversity on automatic evaluation,

and is more preferred in 4.2% cases in manual evaluation. During

the first nine months of deployment, we observed a steady improve-

ment in the RS’s recommendation accuracy. This suggests that with

the support of explanations of recommendations, sales staff have

become increasingly inclined to adopt the system’s suggestions

over time.
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Show All

Bond List Recommendation and Explanation

bond code/ abbreviation/ full name

AA Pension Insurance Co., Ltd.

AAA

Invest Recently Balance on HandDaily Consumption Jiangsu Unrenewable

Financial Company

Unlisted Active Balance on Hand Brokerage

investor attribute
investor ability
investor preference

 XX Co., Ltd. 2023 P-1 SCP

 YY Co., Ltd. 2023 P-2 Corporate Bond

 ZZ Co., Ltd. 2023 P-2 Corporate Bond

 YZ Co., Ltd. 2023 P-1 MTN

Nov 17

BB Bank Co., Ltd.

Click

Recommendation 1
Explanation 1

invest frequently (Y)

Shanghai

Nov 17

Figure 1: The screenshot of our explainable recommendation system for investor-seeking.

The proposed method has broad application value. In the bond

market, for example, corporate credit bonds issued in China’s bond

market reached $2 trillion in 2024, and improving the efficiency

of the bond market would yield significant benefits. It can also be

applied to other scenarios, such as online recruitment platforms, to

explain to HR why a candidate is recommended.

2 RELATEDWORK
In this section, we first introduce general methods for feature-level

explanations. Then, we introduce explanation methods specifically

designed for RS, including feature-level explanations studied in this

paper, as well as other forms of explanations, such as text-based

and sequence-based approaches.

Generating feature-level explanations is widely studied in eX-

plainable AI (XAI). In this field, two approaches are particularly

pertinent to our work. The first approach involves anchor-based

methods [5, 24], which explain model decisions by identifying spe-

cific conditions that lead to a particular classification outcome, such

as a feature equaling a specific value. While conceptually similar to

our approach, integrating these methods into recommendation sys-

tems is non-trivial since recommendation models typically generate

scores instead of discrete labels. Moreover, deriving such explana-

tions has been proven to be a NP-hard task [22] posing significant

challenges for practical implementations in recommendation sys-

tems, which generally involve numerous features.

The second approach entails feature attribution methods that

quantify the contribution of each feature to the output. Among

these methods, LIME [23] and SHAP [19] are the most well-known

model-agnostic methods. These interpret a model’s output for a

given instance by perturbing its features. Notably, SHAP and our

approach share a mathematical affinity through the use of value

functions, even though their interpretative goals diverge.

Furthermore, given the differentiable nature of most deep neural

networks, several gradient-based explanation methodologies [7,

25] have been developed. These methods leverage gradients with

respect to input features to estimate feature significance. Although

feature attribution-based explanation methods provide a pathway

to selecting recommendation explanations by feature contributions,

they treat each feature independently, often resulting in redundant

and spurious features in explanations.

For explanations in RS, few methods are designed specifically

for feature-level explanations. Lime-RS [21] introduces a variant of

LIME [23] that modifies the perturbation strategy for the instance

being considered. Meanwhile, RecXplainer [28] adopts an auxiliary

model that predicts using user embeddings and one-hot encoded

item features. This model conceptualizes a user’s preference for an

item attribute as the decrease in the auxiliary model’s prediction

score when the corresponding item feature is set to a zero vector.
Both methods compute the importance of each feature indepen-

dently, which may lead to redundant and spurious features when

selecting a feature set for explanations.

There are also some other forms of explanations in RS. In sce-

narios where users write reviews on items, some studies build

explainable RSs through personalized review generation using lan-

guage models [16, 17, 32]. Another way to utilize user reviews is by

extracting users’ attention and item advantages from these reviews

to generate counterfactual explanations [8, 26]. For sequential rec-

ommendation, some research proposes presenting the items a user

previously interacted with as the recommendation reason [9, 29].

Different explanation forms are suitable for different scenarios. In

this work, we focus on feature set-based explanations which is

suitable for bond recommendation scenarios.

3 A Motivating Toy Example
We use a toy example to intuitively demonstrate why correlations

among features can lead to spurious and redundant features, and

what kind of approach might help mitigate this issue.

Considering an e-commercial system. Suppose that we have

a set of products, each with four features, namely price1, price2
∈ {low, high}, quality ∈ {low, high}, and color ∈ {blue, other}. In
our data, we intentionally set price1=price2 for each instance to

design a pair of redundant features. Also, price and quality are

positively correlated since low-quality products usually have low

prices. Specifically, each sample is generated as follows:

(1) Sample price1 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (0.5), where 0 and 1 represent low

and high prices.

(2) Set price2 = price1.
(3) if price1 = 0, quality ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑞), where 𝑞 = 0.1 , otherwise

𝑞 = 0.9, and 0 and 1 represent low and high quality.

(4) Sample color ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (0.5), where 1 and 0 represent blue

and other colors, respectively.

(5) Sample𝑦 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (0.8×(1−price1)+0.1×quality+0.1×color),
where 𝑦 = 1 means the user purchases the item.
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Table 1: Feature scores produced by different methods.

price1
=low

price2
=low

quality
=low

color
=blue

ranking

LIME 0.44 0.27 -0.01 0.10 price1>price2>color>quality
Kernel-SHAP 0.22 0.14 -0.01 0.04 price1>price2>color>quality
IG 0.14 0.21 0.01 0.05 price2>price1>color>quality
EG 0.21 0.13 -0.02 0.05 price1>price2>color>quality
Kernel-SHAP-M 0.11 0.12 0.07 0.03 price2≈price1>quality>color
weightedSHAP 0.04 0.02 0.01 0.03 price1>price2>color>quality

According to (5), the probability for this user to buy a product is:

𝑃 (𝑌 = 1|𝑝𝑟𝑖𝑐𝑒, 𝑞𝑢𝑎𝑙𝑖𝑡𝑦, 𝑐𝑜𝑙𝑜𝑟 ) =
0.8 × (1 − 𝑝𝑟𝑖𝑐𝑒1) + 0.1 × 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 + 0.1 × 𝑐𝑜𝑙𝑜𝑟 .

Suppose an itemwith features {price1 = low, price2 = low, quality =

low, color = blue} is recommended to the user. Now we hope to tell

the user why our model recommends this item to her. Clearly, the

expected explanation with different numbers of features are

(1) |S|=1: {price1} or {price2}

(2) |S|=2: {price1, color} or {price2, color}

(3) |S|=3: {price1, price2, color}.

We do not want quality=low in explanation since it reduces the

probability compared with when it takes the value high.
Table 1 shows the feature scores produced by baselines. These

baselines score each feature individually and output the top k fea-

tures as explanations. Take Kernel-SHAP-M as an example. When

required |𝑆 | = 2, it will generate redundant features {price1=low,
price2=low} as the explanation because they get the highest scores of
0.11 and 0.12. When |𝑆 | = 3, it adds quality=low (with the third high-

est score) to the explanation. Here, quality=low gets a high feature

score due to its correlation with the low-price feature preferred by

the user. However, it is unlikely to persuade the user to accept this

recommendation as the user actually slightly prefers high-quality

products. More detailed analyses are provided in Appendix C.

Thus, considering the correlations among features (considering

a feature set jointly) is important to eliminate such problems.

4 METHOD
4.1 Problem Formulation
This work focuses on producing persuasive explanations for rec-

ommendation results in a professional context. In the bond recom-

mendation scenario studied in this paper, the system recommends

potential investors to bonds. This task intrinsically aligns with

recommendation tasks in other domains, such as online shopping

where the system recommends products to users. Here, bonds cor-

respond to users, and investors correspond to products.

We first briefly introduce the recommendation task as prelimi-

nary knowledge. Denote investors in the primary bond market as

𝐼 = {𝑖1, 𝑖2, . . . , 𝑖𝑁𝑖
} and bondswe underwrite as𝐵 = {𝑏1, 𝑏2, ..., 𝑏𝑁𝑏

}.
For a bond 𝑏 ∈ 𝐵 with features 𝒙𝑏 and an investor 𝑖 ∈ 𝐼 with fea-

tures 𝒙𝑖 , the recommendation model 𝑓 predicts the probability

that 𝑖 will invest 𝑏, denoted as 𝑓 (𝒙𝑏 , 𝒙𝑖 ;𝜃 ). The top-m investors

with the highest predicted probabilities, 𝑅(𝑏) = {𝑐1, 𝑐2, . . . , 𝑐𝑚}, are
recommended for 𝑏.

Next, we introduce the Persuasive Explanation Task studied

in this paper. Suppose we recommend 𝑖 to 𝑏. The explanation task

is to select 𝑘 features of 𝒙𝑖 , i.e., 𝒙𝑖
𝑆
= {𝑥𝑖

𝑗
| 𝑗 ∈ 𝑆} where 𝑆 is the

index set of selected features, that best explains why to recommend

𝑖 for bond 𝑏 and persuade users to adopt it.

In this work, we only select features belonging to the investor

to provide explanations, rather than features of the bond. This

choice is motivated by the fact that when identifying potential

investors for a given bond, sales staff are usually more familiar with

the bond’s characteristics but may have limited knowledge about

many investors. Explaining investor features helps themmakemore

informed decisions. However, our method can be extended to use

bond features or a combination of both.

To address the limitation of considering each feature indepen-

dently (discussed in Section 3), our method jointly considers multi-

ple features. We first illustrate our main idea through a hypothetical

ideal scenario. Assuming we have access to infinite investing out-

comes for bonds and investors (even the bond we are issuing). For

a particular investor 𝑖 and bond 𝑏, the probability of investing can

be computed as 𝑃 (𝑌 = 1|𝒙𝑏 , 𝒙𝑖 ) = | { (𝑖′,𝑏′,𝑦) |𝒙𝑏′=𝒙𝑏 ,𝒙𝑖′=𝒙𝑖 ,𝑦=1} |
| { (𝑖′,𝑏′,𝑦) |𝒙𝑏′=𝒙𝑏 ,𝒙𝑖′=𝒙𝑖 } | ,

where (𝑖′, 𝑏′, 𝑦) and 𝑦 = 1 means 𝑖′ bid on 𝑏′. Similarly, for a given

subset of investor features 𝒙𝑖
𝑆
, we can estimate the investing proba-

bility 𝑃 (𝑌 = 1|𝒙𝑏 , 𝒙𝑖
𝑆
) based on subsets of features, which serves

as a metric for the importance of 𝒙𝑖
𝑆
:

𝑃 (𝑌 = 1|𝒙𝑏 , 𝒙𝑖𝑆 ) =
|{(𝑖′, 𝑏′, 𝑦) |𝒙𝑏′ = 𝒙𝑏 , 𝑥𝑖

′
𝑗
= 𝑥𝑖

𝑗
for 𝑗 ∈ 𝑆,𝑦 = 1}|

|{(𝑖′, 𝑏′, 𝑦) |𝒙𝑏′ = 𝒙𝑏 , 𝑥𝑖
′
𝑗
= 𝑥𝑖

𝑗
for 𝑗 ∈ 𝑆}|

.

We call it the sufficient value of 𝒙𝑖
𝑆
, as it measures how sufficient

𝒙𝑖
𝑆
is in outputting a high recommendation score.

Based on sufficient value, we formulate the explanation task as

selecting the feature index set 𝑆 = {𝑆1, ..., 𝑆𝑘 } ⊆ {1, 2, . . . , 𝑁 } that
maximizes the sufficient value:{

max

𝑆⊆{1,2,...,𝑁 }
𝑃 (𝑌 = 1|𝒙𝑆 )

s.t. |𝑆 | = 𝑘
, (1)

where 𝒙𝑆 = (𝒙𝑏 , 𝒙𝑖
𝑆
). Subsequently, without affecting understand-

ing, we will combine 𝒙𝑏 and 𝒙𝑖 and write them as 𝒙 .
This formulation helps detect and reduce redundant features in

explanations because adding a redundant feature to 𝑆 likely will

not improve its sufficient value. For example, in the toy example, if

𝒙𝑆 = {price1=low} yields a high 𝑃 (𝑌 = 1 | 𝒙𝑆 ), adding price2=low to

𝒙𝑆 will not increase this value as it is implied by price1. Moreover, it

also helpsminimize spurious features in explanations since spurious

features combined with the main features in 𝑆 tend to reduce its

sufficient value. A detailed analysis is provided in Appendix C.

Clearly, the sufficient value cannot be directly computed sta-

tistically. So we propose a Mask Training Strategy to train the

recommendation model 𝑓 to estimate sufficient value (Section 4.3).

Then, during inference, we recommend investors for each bond

using 𝑓 , and explain each recommendation via gradient descent on

𝑓 using gates of features (Section 4.4).

This paper distinguishes between “explanations” and “reasons”.
An “explanation” refers to the set of selected features, while a “rea-

son” refers to one feature within that set.
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4.2 Model Structure
We first briefly introduce the structure of the recommendation

model. In this paper, we consider recommendation models with

two properties. 1. Embedding-based: The input features are trans-
formed into embeddings before being fed into the neural network.

2. Differentiable: The model output needs to be differentiable

w.r.t. the embedding. Most deep learning-based ranking models for

industrial recommendation systems satisfy these two properties.

Suppose all features are in the categorical form
1
and an instance

can be represented as 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑛), where 𝑥 𝑗 ∈ 𝑉𝑗 is the

j
th

feature of 𝒙 and 𝑉𝑗 is the set of unique IDs of the j
th

feature.

The sparse one-hot representation of 𝑥 𝑗 is then mapped to a dense

vector via the embedding layer:

𝑒 𝑗 =𝑊
𝑗

𝑒𝑚𝑏
one-hot(𝑥 𝑗 ), (2)

where 𝑒 𝑗 ∈ R𝑑 𝑗
is the embedding of 𝑥 𝑗 ,𝑊

𝑗

𝑒𝑚𝑏
∈ R𝑑 𝑗×|𝑉𝑗 |

is the

embedding matrix of the j
th
feature, 𝑑 𝑗 is the embedding size, and

one-hot(𝑥 𝑗 ) ∈ {0, 1} |𝑉𝑗 |
is the one-hot representation of 𝑥 𝑗 . Then,

these features are fed into deep models, such as DCN [30], to com-

pute the probability of recommendation.

To train a model 𝑓 to predict the probability of user-item inter-

action, we use cross-entropy:

𝐿(𝜃 ) = −E(𝒙,𝑦)∼DCE(𝑓 (𝒙 ;𝜃 ), 𝑦), (3)

where D is the distribution of training data, 𝑦 ∈ {0, 1} is the label
indicating whether the investor bids on the bond, and CE(𝑓 (·), 𝑦) =
𝑦 log 𝑓 (·) + (1 − 𝑦) log(1 − 𝑓 (·)) is the binary cross entropy.

4.3 Mask Training Strategy
The recommendation model 𝑓 cannot take a subset of input 𝒙𝑆 to

compute the probability, so it cannot estimate sufficient values. In-

spired by the masking method of BERT [6], we fill the non-selected

features with special masks to synthesize a full example and use

𝑓 (𝒙𝑆 , 𝒙𝑆 = mask;𝜃 ) to estimate 𝑃 (𝑌 = 1|𝒙𝑆 ), where 𝒙𝑆 = mask
means 𝑥 𝑗 = mask𝑗 for 𝑗 ∉ 𝑆 . Specifically, we add an embedding

vector for each embedding matrix𝑊
𝑗

𝑒𝑚𝑏
to represent mask𝑗 .

However, the model trained with Equation 3 does not encounter

samples with masks (𝒙𝑆 , 𝒙𝑆 = mask) during training, and thus does
not guarantee an approximation to 𝑃 (𝑌 = 1|𝒙𝑆 ). So, we propose
a Mask Training Strategy (MTS) that simulates masked samples

by randomly masking features before feeding them to the model

during training. The process is shown in Algo 1. The training loss

of MTS is:

𝐿𝑀𝑇𝑆 (𝜃 ) = E(𝒙,𝑦)∼DE𝑆
[
𝐶𝐸

(
𝑓 (𝒙𝑆 , 𝒙𝑆 = mask;𝜃 ), 𝑦

) ]
, (4)

where 𝑆 follows the distribution in Algo 1. This loss covers the

ordinary loss defined in Equation 3 because there are sampled

examples whose 𝑆 = ∅.
By minimizing 𝐿𝑀𝑇𝑆 , we theoretically prove that when given a

full example, 𝑓 (𝒙 ;𝜃 ) estimates the bidding probability 𝑃 (𝑌 = 1|𝒙),
andwhen given a selected feature set, 𝑓 (𝒙𝑆 , 𝒙𝑆 = mask;𝜃 ) estimates

the sufficient value 𝑃 (𝑌 = 1|𝒙𝑆 ). In other words, the model trained

with MTS can recommend items and explain itself simultaneously.

1
We convert continuous features into categorical forms using adaptive binning, and

we find this leads to a better recommendation performance.

Algorithm 1 Masked Training Strategy

1: for each (𝑥,𝑦) in dataset do
2: 𝑝𝑚 ← random.uniform(0, 1)
3: 𝑆 ← ∅
4: for 𝑗 ∈ {1, 2, . . . , 𝑁 } do
5: if random.uniform(0, 1) < 𝑝𝑚 then
6: 𝑆 ← 𝑆 ∪ { 𝑗}
7: end if
8: end for
9: Compute loss using (𝑥𝑆 , 𝑦) according to Equation (4).

10: end for
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Figure 2: Selecting features for explanations through opti-
mization of 𝒔 to maximize 𝑓 (𝒙 ⊗ 𝒔;𝜃 ).

The proof is provided in Appendix B. After trainingwithMTS, given

a 𝒙𝑆 , we can estimate the probability 𝑃 (𝑌 = 1|𝒙𝑆 ) in Equation 1.

4.4 Explaining via Gradient Descent
Now, we introduce a gradient descent method that approximately

solves the optimization problem defined in Equation 1 to find the

best explanation 𝑆 . Given a recommended 𝑖 on 𝑏, it conducts gra-

dient ascent on 𝑓 (𝒙𝑏 , 𝒙𝑖 ) by altering which features should be

masked.

We re-organize the computing process of 𝑓 by rewriting the

masking process (𝒙𝑆 , 𝒙𝑆 = mask) as gating on the embeddings to

switch between ordinary feature and mask feature embeddings.

Specifically, we design a gating binary vector 𝒔 ∈ {0, 1}𝑁 where

𝑠 𝑗 = 1 if 𝑗 ∈ 𝑆 , otherwise 𝑠 𝑗 = 0. The embedding fed into the

neural network is 𝑒∗
𝑗
= 𝑠 𝑗𝑒 𝑗 + (1−𝑠 𝑗 )𝑒𝑚𝑎𝑠𝑘

𝑗
, denoted as 𝒙 ⊗ 𝒔. This is

illustrated as the “Mask Gate” block in Figure 2. So, the optimization

problem of Equation 1 is converted to:
max

𝒔∈{0,1}𝑁
𝑓 (𝒙 ⊗ 𝒔;𝜃 )

s.t.

∑𝑁
𝑗=1

𝑠 𝑗 = 𝑘
. (5)

Equation 5 is a combinatorial optimization task with

(𝑁
𝑘

)
po-

tential configurations for 𝒔. We approximate it as a minimization

problem with the following objective:

𝐿𝑒𝑥𝑝𝑙𝑎𝑖𝑛 (𝒔) = −𝑓 (𝒙 ⊗ 𝒔;𝜃 ) + 𝛼 (∥𝒔∥1 − 𝑘)2, (6)
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Table 2: Typical features used in our system.

Feature

Group

Feature Name Range

organization type (e.g. bank/fund/...) 1-12

invest frequency 1-5

Investor

Features

yearly preference level for AAA bonds

(preference feature→ bond feature - rating)

1-5

monthly preference level for AAA bonds

(preference feature→ bond feature - rating)

1-5

yearly preference level for AA bonds

(preference feature→ bond feature - rating)

1-5

Bond rating (e.g. AAA/AA/...) 1-5

Features issuance period (e.g. 1 year/3 years/...) 1-5

where 𝛼 is the weight of regularization that restricts the number of

generated reasons. Then, we solve it via gradient descent by alter-

ing 𝒔. However, since 𝒔 is categorical and thus non-differentiable,

we cannot directly apply gradient descent on 𝒔. So, we adopt the
Gumbel-Softmax trick for optimization, which learns a continuous

parameter as the probability for sampling the gate. You may refer

to [13, 20] for details about Gumbel-Softmax.

5 Experiments
Themain experiments are conducted on a real-world bond dataset.
We first introduce an automatic evaluation experiment, which al-

lows us to evaluate and improve our algorithm during development

without the help of sales staff. Next, we introduce the manual eval-

uation with sales staff. Finally, we introduce the deployment results

achieved at China Securities Co., Ltd (CSC). An experiment on a

synthetic dataset is also conducted to demonstrate the general-

ization capacity of our method. The results shown in Appendix C

imply a similar conclusion like the real-world dataset.

5.1 Dataset
We collected a dataset of in-house bidding history for bonds un-

derwritten by CSC over the past 3 years. It contains millions of

investor-bond interactions (bid/not bid), along with 32 bond fea-

tures and 259 investor features. Some of these features are described

in Table 2. The dataset is split into training, validation, and test sets

based on time, with proportions of 6:2:2.

During testing and deployment, we recommend 50 investors for

each bond. For each recommended investor, we select 𝑘 = 6 investor

features as the explanation. The numbers of recommendations and

features were collaboratively determined with sales staff.

5.2 Settings
Baselines: We compare our method with the following explanation

baselines: LIME [23]; Kernel SHAP [19], which applies the Shapley

kernel to LIME;Weighted SHAP [15], which generalizes the Shapley

value and learns which marginal contributions to focus on directly

from the data; IG [25] (we use zero vectors as the baseline value

for feature embeddings); EG [7]; and RecXPlainer-L/RecExplainer-

MLP, which are RecXPlainer [28] with a linear model or MLP as

the auxiliary model. All baseline methods mentioned above are

attribution-based explanation techniques that assign attribution

scores to features. We select the features with the top-𝑘 scores as

explanations. Additionally, we extend Kernel SHAP and IG by using

our MTS-trained mask embedding as the baseline value, denoted

as Kernel-SHAP-M and IG-M.

Implementation Details: We use MTS to train DCN-V2 [30] as

the recommendationmodel with zero dropout rates. All explanation

methods are applied to this model in the experiment for a fair com-

parison. (The explanation quality on the model trained without
MTS can be found in Appendix A.5 which shows similar conclu-

sions). We use Adam [14], with lr=0.1, to minimize Equation 6,

where 𝛼=0.04, and perform 100 optimization steps.

5.3 Automatic Evaluation Metrics
Evaluating the quality of an explanation is generally challenging

due to the difficulty in defining and annotating ground-truth expla-

nations. Most existing methods rely on manual evaluation [1, 19, 23,

24]. In our study, the task is highly specialized, making it difficult

for non-expert annotators to evaluate explanations, whereas asking

professional sales staff to evaluate explanations is expensive. This

makes it challenging for us to evaluate and improve our method

during development.

Fortunately, we can leverage investor preference features to

automate the evaluation. Specifically, we propose two quantitative

metrics—rationality and diversity—for evaluation.

Rationality: A rational reason should encourage users to adopt a

recommendation, while an irrational reasonmay confuse or discour-

age users. We first define when a reason is rational in our scenario.

Here, we only consider investor preference features. Preference

features (P-feature or P-reason) reflect the investor’s preference

towards a specific feature of bonds in a period. If a preference

feature in the explanation is consistent with the corresponding

bond feature, it is rational. For example, in Table 2, yearly prefer-
ence level for AAA bonds is a P-feature reflecting the proportion

of AAA-rated bonds over the bonds it has bid in the recent year.

Then, for a bond with feature rating=AAA, the reason “yearly pref-
erence level for AAA bonds=high” is rational, and “yearly preference
level for B bonds=high” is irrational, as it will confuse the sales staff
why an investor preferring B-rated bonds is recommended for this

AAA-rated bond. Based on the definition, we adopt Cohen’s kappa

coefficient [4] over all P-reasons in generated explanations of all

samples compared against their corresponding bond features, as

the rationality score.

Diversity: A diverse explanation should contain features from

different aspects to convince the user to adopt the recommenda-

tion. So, we define how to measure diversity in an explanation.

We adopt the classic topic modeling method, Probabilistic Latent

Semantic Analysis (PLSA) [11], to generate a topic vector 𝑠 for

each feature (details can be found in Appendix A.3) and calculate

the average cosine similarity among the topic vectors of features

in an explanation. Formally, the diversity of an explanation 𝒙𝑖
𝑆
is

𝑑𝒙𝑖
𝑆
= 1 − 1/(𝑘

2
)
∑

1≤𝑖< 𝑗≤𝑘 cos(𝑠𝑟𝑖 , 𝑠𝑟 𝑗 ), where 𝑠𝑟𝑖 is the topic vector
of the reason 𝑟𝑖 ∈ 𝒙𝑖𝑆 . Then, the overall diversity is the average of
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Table 3: Explanation quality results.

Method Rationality Diversity HRD AESV Time (s)
2

Baselines:
LIME 0.324 0.520 0.399 0.339 0.61

Kernel SHAP 0.503 0.624 0.557 0.391 101.2

Weighted SHAP 0.457 0.662 0.540 0.393 11.4

IG 0.655 0.622 0.638 0.414 0.050

EG 0.652 0.566 0.605 0.390 0.052

RecXPlainer-L 0.027 0.577 0.051 0.255 0.002
RecXPlainer-MLP 0.178 0.404 0.247 0.318 0.025

Baselines + our MTS-generated mask vector:
Kernel SHAP-M 0.650 0.603 0.625 0.421 10.1

IG-M 0.659 0.632 0.645 0.417 0.051

Ours 0.695 0.701 0.697 0.439 0.165

all explanations’ diversities: 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = 1

|𝐵 |𝑚
∑
𝑏∈𝐵

∑
𝑖∈𝑅 (𝑏 ) 𝑑𝒙𝑖

𝑆
.

Note that 0 ≤ 𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 ≤ 1, because the entries of topic vectors in

PLSA are non-negative.

HRD: To comprehensively evaluate the explanation quality, we

adopt the harmonic mean of Rationality and Diversity (HRD):

𝐻𝑅𝐷 =
2 · 𝑅𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 · 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦
𝑅𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦 + 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 . (7)

Note that the metrics defined above are tailored for our dataset

and may not fully reflect the explanation quality. However, they

can be automatically evaluated and reflect the quality of models.

Although they can be easily maximized by designing tailored rule-

based methods to trim the explanation, our methods and baseline

methods do not incorporate these metrics in their design, thus using

these metrics for comparison is fair. We expect that methods that

perform better on these two metrics will also perform better on

aspects of rationale and diversity that cannot be measured by these

metrics.

AESV (Average Empirical Sufficiency Value): The Empirical Suffi-

ciency Value (ESV) of an explanation 𝒙𝑖
𝑆
is the empirical value of

sufficient value:

𝐸𝑆𝑉 (𝒙𝑏 , 𝒙𝑖𝑆 ) =
|{(𝑖′, 𝑏,𝑦) | 𝑖′ ∈ 𝐼 ; 𝒙𝑖

𝑆
⊆ 𝒙𝑖

′
; 𝑖′ bid 𝑏)}|

|{(𝑖′, 𝑏,𝑦) | 𝑖′ ∈ 𝐼 ; 𝒙𝑖
𝑆
⊆ 𝒙𝑖′ }|

. (8)

And AESV is the average of ESV for all explanations: 𝐴𝐸𝑆𝑉 =
1

𝑁𝑏𝑚

∑
𝑏∈𝐵

∑
𝑖∈𝑅 (𝑏 ) 𝐸𝑆𝑉 (𝒙𝑏 , 𝒙𝑖𝑆 ) . This metric requires data labels

and thus can only be used for evaluation. This metric is similar to

the faithfulness metric [2, 12], but as we have set a fixed number of

reasons, we directly adopted the AESV metric.

5.4 Result and Analysis
The results are shown in Table 3. Our explanation method has

obvious advantages over baselines in both rationality and diversity.

It outperforms the best baseline (i.e., IG) by an absolute margin of

0.040 in rationality and 0.079 in diversity, which translates to a 9.2%

relative improvement in HRD. Integrating theMTS-trainedmasking

vector into baseline methods can improve their performance, but

2
We measure the average time for generating an explanation for one sample, using 8

cores of two Intel Xeon Gold 6248R processors.

our method consistently outperforms the IG-M and Kernel SHAP-M

methods.

Next, we will use some cases to illustrate the details of the result.
Figure 3 shows the explanations for two recommended investors

on one bond. The features of the target bond are shown on the left

panel, and the explanations for the two recommended investors

are shown on the right. If a reason starts with an index number in

the figure, it is a P-reason (refer to the definition of Rationality).

That number corresponds to the index of the bond feature in the

left panel. For example, the first reason selected by Kernel SHAP-M

method on Investor 1 starts with 4), corresponding to bond feature

4) “debt type: quasi-public offering”. Green-numbered reasons are

rational, while red-numbered ones are irrational. For example, the

second reason from Kernel SHAP-M is irrational as it conflicts with

the value of bond feature 5). If a reason starts with a black square

in the figure, it is not a P-reason, and we do not judge whether it is

rational. The reasons enclosed by the curly brace are redundant.

Regarding rationality, the greater number of red reasons in

baseline explanations indicates that the baselines are less rational.

For example, Kernel-SHAP-M explains that investor 1 prefers the

central state-owned issuer, while the bond is issued by the local state-
owned issuer. By analyzing the dataset, we find that this is because

a preference for central state-owned issuers is highly correlated with
a preference for quasi-public offerings (feature 4) of this bond. So,
baselines are misled by spurious correlations among features.

Research Question Q1: How does our method discard the
spurious feature “prefer central state-owned issuer last year" in

this example? We examine the dynamics of gate parameters (the

probability parameter in Gumbel-Softmax) of two investor fea-

tures during gradient descent. The two features are “prefer Central
State-owned Issuer last year" and “prefer Quasi-Public Offering
last month", and we denote their gates as 𝑠𝐶 and 𝑠𝑄 respectively.

As shown in Figure 4a, when 𝑠𝑄 is low, 𝑠𝐶 increases with the opti-

mization steps because 𝑠𝐶 can enhance the network’s output due

to their positive correlation. However, once 𝑠𝑄 surpasses a certain

threshold (after 80 steps), further increasing 𝑠𝐶 decreases the net-

work’s output, causing 𝑠𝐶 to decrease. Therefore, our method will

dismiss the spurious reason “prefer central state-owned issuer last

year". To further illustrate that 𝑠𝐶 is suppressed by 𝑠𝑄 , Figure 4b

shows that 𝑠𝐶 will increase to 1 during gradient descent if we force

𝑠𝑄 = 0.

Similarly, Kernel SHAP-M and IG-M explain that investor 1

prefers renewable bonds, which is inconsistent with the current

bond, due to spurious correlations with which the investor is active

(investing frequently and in large amounts). Our method avoids

generating such spurious reasons by jointly considering selected

reasons.

Regarding diversity, for investor 2 in Figure 3, our method

generates fewer redundant features. Although our method and

baselines all provide rational explanations, our method can provide

a more convincing explanation by providing more information

within the same number of reasons. For example, we explain that

investor 1 prefers issuers in Beijing and investor 2 prefers 5-year

bonds, which are not revealed by baseline methods.
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4)  prefer quasi public offering last month
5)  prefer renewable bond last year
8)  prefer central state-owned issuer last year
9)  prefer issuer under SASAC last month
ł	invest frequently last year
ł	invest large amount last year

3)  prefer AAA bond last month
4)  prefer quasi public offering last year
7)  prefer issuer in BeiJing last year
ł	invest frequently last year
ł	invest large amount last year
ł	invest at high interest rate last year

Kernel SHAP-M

1)   period: 5 year
2)   subject rating: AAA
3)   debt rating: AAA
4)   debt type: quasi public                             
offering
5)   renewable: False
6)   issuer industry: real estate
7)   issuer province: Beijing
8)   issuer property: local state-
owned
9)   issuer type: non-financial
10) issuer is listed: False

OURS
3)  prefer AAA bond last month
4)  prefer quasi public offering last month
5)  prefer renewable bond last year
ł	invest frequently last year
ł	invest large amount last year                               
ł	is insurance company

IG-M
Target Bond Features:

2)  prefer AAA subject last month
4)  prefer quasi public offering last month
4)  prefer quasi public offering last year
ł	invest frequently last month
ł	invest frequently last year
ł	invest large amount last year

1)  prefer 5-year bond last year
2)  prefer AAA subject last month
4)  prefer quasi public offering last month
5)  prefer unrenewable bond last year
ł	invest frequently last month
ł	invest frequently last year

2)  prefer AAA subject last month
2)  prefer AAA subject last year
4)  prefer quasi public offering last month
4)  prefer quasi public offering last year
ł	invest frequently last month
ł	invest large amount last year

In
ve

st
or

 1
In
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st
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 2

Figure 3: Case study. Explanations for two investors recommended for one bond, produced by three methods. Our method
produces fewer spurious (red-numbered) and less redundant (in brace) reasons.
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Figure 4: Changes of gates 𝑠𝑄 and 𝑠𝐶 during gradient descent
indicate that our method can suppress spurious features.
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Figure 5: Explanation quality is highly correlated with the
average sufficiency value.

5.5 Discussion and Ablation Study
Next, we conduct several detailed analyses of our proposed method

by answering 3 research questions.

Q2: Is the objective defined inEquation 1 suitable to achieve
a concise explanation, and how well do we optimize it? Fig-
ure 5 shows that AESV has a strong correlation with explanation

quality (i.e., HRD) for all methods. This indicates that the objec-

tive is suitable and can lead to rational and diverse explanations.

Moreover, as shown in Table 3, our method achieves a higher AESV

Table 4: Ablation on mask embedding for explanation.

Method Rationality Diversity AESV

Ours 0.695 0.701 0.439
Zero embedding 0.659 0.631 0.424

Avg embedding 0.343 0.644 0.333

than the best baseline (i.e., IG) by a margin of 6.0% relatively, which

means that our method does optimize this objective.

Q3: What is the effect of MTS and the learned mask em-
beddings? First, we conduct an ablation study on the learned mask

embeddings. We use a zero vector or average embedding vector

of each feature to replace the mask embedding when explaining

instances. Specifically, after training the recommendation model

with MTS, we replace the mask embedding with a zero/average em-

bedding when we optimize 𝒔. Table 4 shows that mask embedding

is crucial for the algorithm and that replacing mask embeddings

with zero or average embedding will severely harm the explanation

quality. This reflects that the embedding vectors generated by MTS

are important for explanation.

Second, using the learned mask embeddings will improve the

explanation performance of other methods. The Baselines+ our MTS
generated mask vector part of Table 3 shows that IG and Kernel

SHAP can be promoted by applying our trained mask embeddings

as the baseline value (i.e., IG-M, Kernel SHAP-M). For IG, compared

with the zero vector, the mask embedding represents an unknown

feature and is more suitable for the baseline embedding. For Kernel

SHAP, using mask embedding changes the SHAP value from off-

manifold to on-manifold, leading to less spuriousness caused by

algebraic model dependence.

Moreover, MTS has a negligible influence on recommendation

performance. We compare training with or without MTS on three

datasets and four models. Their recommendation performances are

similar, as detailed in Appendix A.4.
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Table 5: Similar features improve recomm. performance.

AUC LogLoss↓ Rec@50 Pre@50

Basic Model 0.9038 0.0791 0.552 0.221

- monthly preference 0.9027 0.0804 0.518 0.211

- yearly preference 0.8997 0.0795 0.522 0.212

Q4: Can we remove all similar features throughout the
RS to avoid redundancy? The answer is no. First, the correlation
among features is complex, defining what are similar features is

difficult. For example, the cases discussed above show some sub-

tle correlations between features that are intuitively irrelevant.

Second, removing similar features by rules will decrease the recom-

mendation performance. Table 5 shows that removing even very

similar features, such as removing monthly preference features

while retaining yearly preference features, will still decrease the

recommendation performance. So, in real-world applications, we

have to incorporate all features because they may contain different

information that can be captured by the model. This justifies that

our study on reducing similar features in explanation is necessary.

5.6 Online Manual Evaluation
We conducted an online test with the sales staff at CSC as follows.

For multiple recommended investors for a bond recommendation,

two sets of explanations were presented side by side under each

investor, each containing 6 features. These two sets were the results

of our method and the IG-M method (the best baseline method com-

bined with our MTS-trained vectors). We filtered out cases where

the two methods produced the same explanation. The two results

were placed randomly. For each recommendation, the sales staff

were asked to choose which set of explanations was more convinc-

ing in persuading them to contact the investor. Eleven sales staff

participated in the experiment, with each person being presented

with 60 options across 6 bonds currently to be issued, each with 10

recommended investors. The results showed that our method was

selected 344 times (accounting for 52.1%), and the IG-M method

was selected 316 times (accounting for 47.9%), indicating that our

method is superior to IG-M from the perspective of sales staff.

5.7 Real-World Application and Evaluation
Our system has been deployed at China Securities Co., Ltd. for over

a year and is integrated into the platform that covers the whole

process of bond issuance and duration management in the com-

pany. Our model is scheduled to update each day to incorporate

the up-to-date bidding data. Moreover, we collect the bidding data

for each bond after the issuing day and evaluate the recommenda-

tion performance of our model using this online data. Although

our explanation requires 100 steps of gradient descent for explain-

ing, since the bonds and investors are fixed, we can pre-compute

overnight.

We show the 𝑅𝑒𝑐𝑎𝑙𝑙@50 and 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@50 of our bond RS af-

ter deployment in Figure 6, using the average of these metrics on

bonds issued within each month. 𝑅𝑒𝑐𝑎𝑙𝑙@50 reflects the extent to

which our RS can discover potential investors, while 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@50

reflects the extent to which the recommended investors will bid
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Figure 6: Recommendation performance evolution after de-
ployed in China Securities Co., Ltd.

on the target bond. We can see that, throughout the nearly year-

long deployment period, the recommendation performance shows

a continuous improvement trend. This could be attributed to the

growing tendency for sales staff to adopt the recommendation and

inform suggested investors, thereby raising the chances of recom-

mended bonds being known by interested investors. This trend

indicates that concise explanations for recommendations might

help to establish a beneficial feedback loop within the professional

domain, where the results of recommendations positively influence

investment actions (the business performance), and by following

the recommendation, investment actions lift the recommendation

performance in return.

5.8 Limitations
Our explanation method still has some limitations. First, there are

still redundant and spurious features selected by our proposed

method. This may be attributed to the following three reasons: 1.

Features are not identical but are just correlated, thus distinguishing

them is difficult. 2. The model trained with MTS still has deviation

in estimating the sufficient value. 3. Gradient descent does not guar-

antee a globally optimal solution of Equation 5. Second, our method

may be unsuitable for real-time recommendation applications, as

gradient descent could be slow. Addressing this limitation will be a

focus of our future research efforts.

6 Conclusion
This paper presents a recommendation system deployed at China

Securities Co., Ltd., designed to assist sales staff in the primary bond

market with finding investors for bonds. We focus on the feature-

based persuasive explanation algorithm. To address spurious and

redundancy issues, we propose sufficiency value as the optimization

objective, and introduce a mask training strategy combined with a

gradient descent method.
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A Experiment Detail
A.1 Settings
During the explanation by gradient descent, for Gumbel-Softmax,

𝒛 ∈ [0, 1]𝑁 is produced by sigmoid(𝒛′), and all entries of 𝒛′ are
initialized with -10. We set 𝜏 = 5 as the initial value in Gumbel

Softmax and anneal it down to 0 during optimization.

A.2 Understanding P-reason and Its Rationality

Table 6: All investor preference features and their corre-
sponding bond features.

Investor Preference Feature Bond Feature

monthly preference level for 1 year bond

yearly preference level for 2-3 year bond

...

period

monthly preference level for AAA subject

yearly preference level for AA+ subject

...

subject rating

monthly preference level for AAA bond

yearly preference level for AA+ bond

...

debt rating

monthly preference level for commercial paper

yearly preference level for corporate bonds

...

type

monthly preference level for renewable bond

yearly preference level for unrenewable bond

renewable

monthly preference level for finance

yearly preference level for material industry

...

issuer industry

monthly preference level for issuer in BeiJing

yearly preference level for issuer in GuangDong

...

issuer province

monthly preference level for central state-owned co.

yearly preference level for local state-owned co.

...

issuer property

monthly preference level for non-financial enterprise

yearly preference level for commercial bank

...

issuer type

monthly preference level for unlisted company

yearly preference level for listed company

issuer is listed

We group investor preference features into 10 types, each of

which corresponds to a bond feature. The details can be seen in

Table 6. For each investor preference feature 𝑟 in generated explana-

tions, we say it reflects the investor’s preference towards a specific

type of bond (i.e. it is a P-reason) if the preference level of 𝑟 is above
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Table 8: Explanation quality of Model Trained without MTS.

Method Rationality Diversity HRD

LIME 0.323 0.581 0.415

Kernel SHAP 0.532 0.625 0.574

WSHAP 0.491 0.651 0.559

IG 0.519 0.707 0.598

EG 0.557 0.611 0.593

RecXPlainer-L 0.024 0.755 0.046

RecXPlainer-M 0.230 0.435 0.300

Ours (with MTS) 0.695 0.701 0.697

Table 7: Influence of Mask Training Strategy (MTS) on rec-
ommendation performance.

Model

Avazu Criteo CSC

AUC Loss AUC Loss AUC Loss

DNN 0.7630 0.3682 0.8137 0.4381 0.8958 0.0837

+MTS 0.7633 0.3675 0.8135 0.4385 0.8983 0.0833

W&D 0.7649 0.3665 0.8139 0.4380 0.8980 0.0823

+MTS 0.7636 0.3675 0.8134 0.4385 0.9037 0.0793

DeepFM 0.7648 0.3667 0.8138 0.4381 0.9008 0.0857

+MTS 0.7633 0.3676 0.8132 0.4386 0.9019 0.0794

DCN-v2 0.7656 0.3664 0.8142 0.4378 0.9009 0.0797

+MTS 0.7644 0.3667 0.8140 0.4380 0.9038 0.0791

the average preference level of all investors. We decide whether a

P-reason is rational by the target bond’s corresponding feature.

A.3 Generating Topic Vectors for Investor
Features via PLSA

Analogous to the scenario of using PLSA in document modeling,

each sample is treated as a document where the investor features are

thewords in our experiment. The features of investors constitute the

vocabulary.We set the number of topics to 50. The topic distribution

for a word (i.e., investor feature) is used as the representation of

the word in the topic space.

A.4 Influence of Mask Training Strategy on
Recommendation Performance

To show the influence of MTS on recommendation performance,

we conduct an ablation study in our dataset (CSC) and two public

datasets (Avazu [31] and Criteo [27]). We test four well-known

models: DNN, Wide&Deep [3], DeepFM [10], and DCN-V2 [30].

For experiments on the Avazu and Criteo datasets, we follow

the implementation of BARS [33], which is an open benchmark

for the recommendation system. Specifically, we use Avazu_x1 and

Criteo_x1, where x1 means a specific way for data splitting and

preprocessing in BARS. Since the features of these two datasets

are anonymous, we apply MTS to all features of these datasets.

Following previous studies [3, 10, 18, 30], we use AUC and LogLoss

for evaluation. Table 7 shows the results. We can see that MTS has

a slight impact on the performance of deep CTR models.

A.5 Explanation Quality on Model Trained
without MTS

Table 8 shows the quality of explanations generated by baselines

on the model trained without MTS. Generally, we observe that the

model trained without MTS can generate more diverse but much

less rational reasons compared with the model trained with MTS

(refer to Table 3). All of these methods achieve HRD scores lower

than our method.

B Minimizing 𝐿𝑀𝑇𝑆 Gives Both
Recommendation and Explanation Models

Here, we proof that minimizing 𝐿𝑀𝑇𝑆 gives a model that can be

used to approximate 𝑃 (𝑌 = 1 | 𝒙) for recommendation and 𝑃 (𝑌 =

1 | 𝒙𝑆 ) for explanation. Before presenting the proof, we introduce
essential notations. Let 𝑋 = {𝑋1, 𝑋2, . . . , 𝑋𝑁 } denote the set of

random variables corresponding to investor features, and let 𝑌

represent the random variable that signifies whether an investor

bids on the bond. The specific instances of 𝑋 , 𝑌 are denoted by

lowercase x = {𝑥1, 𝑥2, . . . , 𝑥𝑁 }, 𝑦 respectively. Additionally, we

define a mask vector m = {𝑚1,𝑚2, . . . ,𝑚𝑁 } , where 𝑚𝑖 ∈ {0, 1}
means whether the i-th investor feature is masked. We denote

𝑋m ≜ {𝑋𝑖 |1 ≤ 𝑖 ≤ 𝑁 ∧𝑚𝑖 = 0} and xm ≜ {𝑥𝑖 |1 ≤ 𝑖 ≤ 𝑁 ∧𝑚𝑖 = 0}

Proposition B.1. 𝐿𝑀𝑇𝑆 is minimal w.r.t. 𝑓𝑚 (x,m;𝜃 ) only if
𝑓𝑚 (x,m;𝜃 ) = 𝑝 (𝑌 = 1|𝑋m = xm)

Proof.

𝜕𝐿𝑀𝑇𝑆

𝜕𝑓𝑚 (x,m;𝜃 )

=
𝜕E𝑋,𝑌∼𝐷Em′𝐶𝐸 (𝑓𝑚 (𝑋,m′;𝜃 ), 𝑌 )

𝜕𝑓𝑚 (x,m;𝜃 )

= E𝑋,𝑌∼𝐷

[
I(𝑋m′ = xm)𝑝 (m′ = m) 𝜕𝐶𝐸 (𝑓𝑚 (x,m;𝜃 ), 𝑌 )

𝜕𝑓𝑚 (x,m;𝜃 )

]
= 𝑝 (m′ = m)E𝑋,𝑌∼𝐷

[
I(𝑋m′ = xm)

𝜕𝐶𝐸 (𝑓𝑚 (x,m;𝜃 ), 𝑌 )
𝜕𝑓𝑚 (x,m;𝜃 )

]
= 𝑝 (m′ = m)E𝑋,𝑌∼𝐷

[
I(𝑋m′ = xm)

𝑓𝑚 (x,m;𝜃 ) − 𝑌
𝑓𝑚 (x,m;𝜃 ) (1 − 𝑓𝑚 (x,m;𝜃 ))

]
=

𝑝 (m′ = m)
𝑓𝑚 (x,m;𝜃 ) (1 − 𝑓𝑚 (x,m;𝜃 )) ×

E𝑋,𝑌∼𝐷 [I(𝑋m′ = xm) (𝑓𝑚 (x,m;𝜃 ) − 𝑌 )]

=
𝑝 (m′ = m)

𝑓𝑚 (x,m;𝜃 ) (1 − 𝑓𝑚 (x,m;𝜃 )) ×

[𝑓𝑚 (x,m;𝜃 )𝑝 (𝑋m = xm) − 𝑝 (𝑋m = xm, 𝑌 = 1)]
(9)

If 𝐿𝑀𝑇𝑆 is minimal w.r.t. 𝑓𝑚 (x,m;𝜃 ) then 𝜕𝐿𝑀𝑇𝑆

𝜕𝑓𝑚 (x,m;𝜃 ) = 0. Thus,

𝜕𝐿𝑀𝑇𝑆

𝜕𝑓𝑚 (x,m;𝜃 ) = 0

⇔𝑓𝑚 (x,m;𝜃 )𝑝 (𝑋m = xm) − 𝑝 (𝑋m = xm, 𝑌 = 1)
⇔𝑓𝑚 (x,m;𝜃 ) = 𝑝 (𝑌 = 1|𝑋m = xm)

(10)

□
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Table 9: Sufficient value of different feature subsets.

|𝑆 | 𝑥𝑆 𝑃 (𝑌 = 1 |𝒙𝑆 ) 𝑓 (𝒙𝑆 )

1

{price1 = low} 0.86 0.860

{price2 = low} 0.86 0.860
∗

{quality = low} 0.77 0.768

{color = blue} 0.55 0.612

2

{price1 = low, color = blue} 0.91 0.888

{price2 = low, color = blue} 0.91 0.880
∗

{price1 = low, price2 = low} 0.86 0.873

{price1 = low, quality = low} 0.85 0.867

{price2 = low, quality = low} 0.85 0.881

{quality = low, color = blue} 0.82 0.797

3

{price1 = low, price2 = low, color = blue} 0.91 0.904
∗

{price1 = low, quality = low, color = blue} 0.90 0.897

{price2 = low, quality = low, color = blue} 0.90 0.902

{price1 = low, price2 = low, quality = low} 0.85 0.871

Remark 1. Based on proposition B.1, if 𝐿𝑀𝑇𝑆 is minimal w.r.t.
𝑓𝑚 (x,m;𝜃 ), then we have

𝑓𝑚 (x, 0;𝜃 ) = 𝑝 (𝑌 = 1|𝑋 = x) = 𝑝 (𝑦 = 1|x)
𝑓𝑚 (x,m𝑆 ;𝜃 ) = 𝑝 (𝑌 = 1|𝑋m𝑆

= xm𝑆
) = 𝑝 (𝑦 = 1|x𝑆 ),

(11)

where m𝑆 = [I(𝑖 ∈ 𝑆) |1 ≤ 𝑖 ≤ 𝑁 ] is the corresponding mask
vector for the chosen set 𝑆 , which means 𝑓𝑚 (x, 0;𝜃 ) can be used
for recommendation, and 𝑓𝑚 (x,m𝑆 ;𝜃 ) can be used to compute the
sufficiency score for explanation.

C Details and Discussion on the Toy Example
Table 9 shows the proposed sufficient value 𝑃 (𝑌 = 1|𝒙𝑆 ) and model

estimation 𝑓 (𝒙𝑆 ) for each feature subset 𝑆 . The subsets are shown

in 3 groups according to |𝑆 |. In each group, the feature subsets that

achieve the highest scores are highlighted in bold.

We first look at sufficient values. When |𝑆 | = 1, price1=low
and price2=low obtain the highest score of 0.86. When |𝑆 | = 2,

{price1=low,color=blue} and {price2=low,color=blue} obtain the high-

est score of 0.91. In this case, we find 𝑃 (𝑌 = 1|𝑝𝑟𝑖𝑐𝑒1 = 𝑙𝑜𝑤, 𝑐𝑜𝑙𝑜𝑟 =

𝑏𝑙𝑢𝑒) > 𝑃 (𝑌 = 1|𝑝𝑟𝑖𝑐𝑒1 = 𝑙𝑜𝑤, 𝑝𝑟𝑖𝑐𝑒2 = 𝑙𝑜𝑤) = 𝑃 (𝑌 = 1|𝑝𝑟𝑖𝑐𝑒1 =

𝑙𝑜𝑤). This reflects that selecting a redundant feature 𝑝𝑟𝑖𝑐𝑒2 = 𝑙𝑜𝑤

into {𝑝𝑟𝑖𝑐𝑒1 = 𝑙𝑜𝑤} cannot increase the sufficiency value while

selecting another feature 𝑐𝑜𝑙𝑜𝑟 = 𝑏𝑙𝑢𝑒 does. More generally, sup-

pose two features 𝑎 and 𝑎′ are redundant to each other. For a

recommended item, if a feature set 𝑆 contains 𝑎 but not 𝑎′, then
𝑃 (𝑌 = 1|𝒙𝑆 ) would be the same as 𝑃 (𝑌 = 1|𝒙𝑆∪{𝑎′ } ). And, it is pos-
sible to substitute 𝑎′ with another feature to increase 𝑃 (𝑌 = 1|𝒙𝑆 )
further. Thus, explaining based on sufficient value can avoid redun-

dant features.

And for 3-feature subsets, {price1=low, price2=low, color=blue}
obtain the highest score of 0.91. In this case, 𝑃 (𝑌 = 1|𝑝𝑟𝑖𝑐𝑒1 =

𝑙𝑜𝑤) > 𝑃 (𝑌 = 1|𝑝𝑟𝑖𝑐𝑒1 = 𝑙𝑜𝑤, 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑙𝑜𝑤), reflecting that

adding quality=low into {price=low} will decrease the sufficiency

value. In other words, our method effectively filters out the spurious

feature if the “real” reason behind the spurious feature has already

been in the current candidate feature set.

Then, we look at the estimated value 𝑓 (𝒙𝑆 ) in the column. They

are similar to 𝑃 (𝑌 = 1|𝒙𝑆 ) in values as well as in rankings, demon-

strating our method can correctly estimate the sufficient value. For

each |𝑆 | group, we mark the subset selected by gradient descent

with a star beside the corresponding 𝑓 (𝒙𝑆 ) value. The selected

explanations are as expected, demonstrating our method can find

the best subset via gradient descent.
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