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Abstract. Quantitative facts are constantly produced in the operations
of companies and governments, supporting data-driven decision-making.
While common facts are structured, many long-tail quantitative facts
remain hidden in unstructured documents, making them difficult to ac-
cess. We propose the task of Quantity Retrieval—given a description of
a quantitative fact, the system returns the relevant value and supporting
evidence. Understanding quantity semantics in context is key to solv-
ing this task. We introduce a framework based on description parsing,
which converts text into structured (description, quantity) pairs and en-
ables effective retrieval. To improve learning, we construct a large para-
phrase dataset using weak supervision based on quantity co-occurrence.
We demonstrate our approach using a large corpus of financial annual re-
ports and a newly annotated quantity description dataset. Experiments
show our framework significantly improves top-1 retrieval accuracy from
30.98% to 64.66%.

Keywords: Quantity Retrieval · Weak Supervision · Information Ex-
traction

1 Introduction
Quantitative facts are regularly produced by companies and governments and
published in periodic reports. For example, companies disclose operational data
such as sales, revenue, and employee count, while governments release economic
indicators like GDP, market size, and investment figures. These quantities under-
pin decision-making in business, policy, and daily life. To support such decisions,
one must first locate the relevant quantities. The search query is typically a tex-
tual description, e.g., the number of cars delivered by Tesla in 2020, the GDP of
the US in 2021, and the expected result is a value of 180,570 or $22.99 trillion.

While popular quantities may be retrievable via commercial search engines,
long-tail facts often are not. Many domain-specific quantities are buried in long,
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Fig. 1. A sketch of Quantity Retrieval Application.

professional documents—often in PDF or scanned form—where sentence and
paragraph structure is lost. Locating them requires domain knowledge and man-
ual navigation through extensive documentation. For instance, financial analysis
demands numerous related quantities, making the process laborious and time-
consuming. Recent advances in document parsing [3, 13] have improved accessi-
bility, enabling search engines to index such content more effectively.

In this work, we propose the task of Quantity Retrieval : given a textual
description of a quantitative fact, return relevant quantities and supporting ev-
idence—a snippet from the document that describes the quantity. An example
is shown in Figure 1, where the model returns a target quantity with contextual
evidence and other relevant matches below. We outline the key challenges next.

Challenge 1: Textual vs. Semantic Similarity. Textual similarity does
not always reflect semantic correctness. Consider the query “number of R&D
staff of Apple in 2019.” A sentence in Apple’s 2020 annual report—“In 2020,
the number of R&D staff in Apple was 10,000, increased by 25% compared to
2019”—contains all the query terms but provides quantities for 2020 and the
change from 2019, not the target value itself.

Challenge 2: Paraphrases vs. Confusing Descriptions. Different phras-
ings may refer to the same fact (e.g., “sales” vs. “market size” in “smartphone
sales/market size in 2021”), while similar words may describe different facts
(e.g., “R&D expense” vs. “R&D expenditure”). The latter differ in accounting
context—expenses are tied to revenue, while expenditures imply long-term in-
vestment.

Our Approach. We address these challenges using NLP techniques. An
overview is shown in Figure 2. First, we convert raw documents into a quan-
tity description corpus, where each record pairs a description with a quantity.
For example, in Doc1 of Figure 2, two records are extracted. Each description
is a concise textual span that explains what the quantity measures. We treat
description parsing as a sequence labeling task and train a deep neural model.

Next, we construct a paraphrase dataset by grouping different descriptions
that share the same quantity. A ranking model is trained on this weakly super-
vised data to measure description similarity. At retrieval time, given a query, the
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Source Description Quantity

Doc 1 Sent 5 
Quant 1

2021 the per capita disposable 
income in China urban areas

47,412 
yuan

Doc 1 Sent 5
Quant 2

2021 the per capita disposable 
income in China rural areas

18,931 
yuan

Doc 2 Sent 12
Quant 1

Q2 2021 Tesla delivered 
vehicles

201,250

…

Description
Parsing Model

Document 
Corpus

Quantity 
Description 

Corpus

Doc 2

Description
Parsing Dataset

Quantity-Coincidence
Weak Supervision

Ranking Model

Paraphrase 
Dataset

Manually 
label a few

Automatically
generate a lot

Search

Doc 1
… In 2021, the per capita disposable income in China 
has grown in both urban and rural areas, reaching 
47,412 yuan and 18,931 yuan respectively …

Doc 2
… Tesla delivered 201,250 vehicles in Q2 2021, its first 
time delivering more than 200,000 vehicles in a three-
month period.  …

Fig. 2. The overview of our proposed quantity retrieval via description parsing (the
blue parts) and weak supervision (the green parts).

model finds the most similar description in the corpus and returns its quantity
and supporting snippet.

To support this, we manually annotated 42,130 sentences and 112,117 quan-
tities with descriptions. Our model achieves an 89.47 F1 score at the segment
level—comparable to human performance. We further parsed a larger corpus,
yielding around 3 million quantities. Experiments show that both our parsing
method and weak supervision strategy significantly improve retrieval. These re-
sults highlight the value of deeper semantic analysis for fine-grained information
retrieval.

In summary, the contributions of our work are as follows:

– We propose the task of quantity retrieval from text.
– We propose a description parsing and weak supervision approach to understand

the meaning of quantities in text.
– We collect a large-scale dataset, analyze the characteristics of the description

of quantity, and conduct extensive experiments and analysis.

2 The Description of a Quantity

This section defines quantity descriptions and highlights their key characteristics.
The meaning of a quantity in a sentence can be expressed through the text

spans that describe it. If we rewrite a sentence to the form “X is Q,” then X
represents the quantity’s meaning. We refer to X as the description of quantity
Q. Examples appear in Figure 2 (right).

Quantity descriptions in text exhibit several properties. First, a sentence may
contain multiple quantities. Second, a single description may consist of multiple,
possibly discontinuous, text segments (see underlined examples in Figure 2).
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Third, some quantities are not factual—for example, “200,000” in Doc2—which
cannot be cast into the “X is Q” form. These are excluded from description
parsing and retrieval.

Descriptions are composed of several semantic factors:

– Performance indicator: The core of the description—what the quantity mea-
sures (e.g., “delivered vehicles,” “per capita disposable income”).

– Time: Indicates when the measurement was taken; necessary for handling tem-
poral queries.

– Subject: The entity the quantity is about (e.g., “Tesla”).
– Place: The geographic or regional scope (e.g., “China”).

Descriptions can be complex and include more factors. Lamm et al. [12], for
example, identify 11 roles for quantities in financial text. However, we focus only
on the time factor, as distinguishing all possible factors is labor-intensive and
not essential for our retrieval task.

We now formally define the description parsing task.

Definition 1. The Description Parsing task is that given a sentence s = (w1, ..., wn)
and a set of quantities {qi = (wa, ..., wb)}mi=1 in s, for each quantity q, output
d, a continuous or dis-continuous sub-sequence of s that fully and concisely de-
scribe q, in which “fully” requires all the necessary factors about q are included
and “concisely” means no words in the description could be removed.

3 Quantity Retrieval via Description Parsing and Weak
Supervision

Definition 2. The Quantity Retrieval task is that, based on a document corpus
C, given a textual query x which describes the required quantity, return a list of
quantities and their evidence (text around quantities) in which quantities more
related to x appear earlier in the result list.

Figure 2 illustrates the overall framework. The system begins with a docu-
ment corpus Cd. In the first stage (blue boxes), we train a description parsing
model using a manually annotated dataset, and apply it to Cd to construct a
quantity description corpus Cq = {(di, qi)}ni=1, where each record is a (descrip-
tion, quantity) pair.

Next (green boxes), we train a ranking model using weak supervision. We gen-
erate paraphrase pairs by identifying different descriptions that share the same
quantity—based on the assumption that such descriptions are likely paraphrases.
These pairs are used to train the ranking model for paraphrase detection.

At inference time, given a query, the ranking model retrieves the most sim-
ilar descriptions from Cq and returns their corresponding quantities along with
contextual snippets.

The remainder of this section details the description parsing, weak supervi-
sion strategy, and ranking model.
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3.1 Description Parsing Model

The description parsing model is fully supervised and requires an annotated
dataset (described in Section 4). Here, we focus on the model design.

Since sentences may contain multiple, possibly overlapping quantities with
discontinuous descriptions, parsing all of them simultaneously is challenging. We
therefore adopt a one-at-a-time approach: the model parses the description of
a single quantity per pass. This is similar to semantic role labeling [10], but
centered on quantities rather than predicates.

Our model follows a sequence labeling framework, with a modification to
highlight the target quantity. Given an input sentence s = (w1, ..., wn) and a
pivot quantity q = (wi, ..., wj), we insert special tokens to mark its span: s′ =
(w1, ..., [START], wi, ..., wj , [END], ..., wn). A separate sentence is constructed for
each quantity in a sentence.

The model has two layers: encoding and classification.
The encoding layer maps the input sequence to contextualized hidden vec-

tors:
(h1, h[START], hi, ..., hj , h[END], ..., hn) = Encoder(s′)

The classification layer assigns BIEO tags (Begin, Inside, End, Outside) to
each token using a feed-forward network over the hidden vectors [25], identifying
segments that form the quantity description.

For example, in the second quantity from Doc1 in Figure 1, the description
includes “2021,” “the per capita disposable income,” “China,” and “rural areas.”
The tagged sequence is:

InO 2021B ,O theB perI capitaI disposableI incomeE inO ChinaB hasO
grownO inO bothO urbanO andO ruralB areasE ,O reachingO 47,412O
yuanO andO [START]O 18,931O yuanO [END]O respectivelyO .O

These tags are then used to reconstruct the quantity’s description.

3.2 Value-Coincidence Weak Supervision

Algorithm 1 Value-Coincidence Weak Supervision
Initialize BM25 using Cq, return top k results.
paraphrase = []
confusing = []
for (di, qi) in Cq do:

for (dj , qj) in BM25(di, k) do:
if SameValue(qi, qj) then

paraphrase.append([qi, qj ])
else

confusing.append([qi, qj ])
end if

end for
end for
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The paraphrase and confusing description challenge discussed in the Intro-
duction cannot be addressed by dependency parsing. An intuitive solution for
this is to construct a paraphrase knowledge base. But it heavily relies on profes-
sional expert knowledge. However, Cq provides us an opportunity to construct
such a paraphrase dataset atomically. This is based on two observations:

1. Important paraphrases exist in the corpus. If a quantitative fact (or perfor-
mance indicator) has multiple descriptions, they will appear in the corpus.
Otherwise, if there is only one description for a fact in a large corpus, users
might tend to use this standard description during searching. This is tenable
when the corpus is large enough.

2. Paraphrases can be mined automatically. A characteristic of quantitative fact
is that paraphrase descriptions share the same quantity value. So, we can mine
paraphrases based on quantity-coincidence in Cq. Specifically, if two descriptions
share the same quantity and are somewhat similar in text, they are likely to
paraphrase referring to the same fact.

We demonstrate the rationale for the second observation as follows. For any
two records (di, qi), (dj , qj) referring to facts fi and fj , we denote the event
that di is similar to dj as D, qi = qj as Q, fi = fj as F . The probability that
these two records refer to the same fact, given the quantity is the same and the
description is similar is defined as:

P (F |D,Q) =
P (F,D,Q)

P (D,Q)
=

P (F )

P (D,Q)

=
P (F )

P (D,Q|F )P (F ) + P (D,Q|F̄ )P (F̄ )

=
P (F )

P (F )
(
P (D,Q|F )− P (D,Q|F̄ )

)
+ P (D,Q|F̄ )

≈ P (F )

P (F ) + P (D,Q|F̄ )
=

1

1 + P (D,Q|F̄ )
P (F )

=
1

1 + P (D|QF̄ )P (Q|F̄ )
P (F )

Suppose there are N records in Cq, and each fact has r records with similar
descriptions, then P (F ) = r

N . The vocabulary size of the corpus is V and the
number of terms in a description is l, then P (D|Q, F̄ ) ≈ P (D|F̄ ) ≈ 1

V l . A quan-
tity has s significant digits, then P (Q|F̄ ) = 1

10s . Therefore, P (D|QF̄ )P (Q|F̄ )
P (F ) =

N
V l10sr

→ 0 when V is large (like 104) and N is not too large (like 106), and thus
P (F |D,Q) ≈ 1.

We use BM25 to search and measure the similarity between two descriptions
and develop a rule to judge whether two quantities are the same considering the
number of their significant digits and the rounding problem. The overview of
the process is shown in Algorithm 1, where SameValue is the rule-base value-
coincidence judging function, and k is the number of results from BM25.

3.3 Ranking Model

Based on the paraphrase dataset constructed above, we are able to train a rank-
ing model. We adopt the Siamese Network [18] which encodes a description (or
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Table 1. Results on Description Parsing.

Strict Mode Partial Mode
Segment Level Quantity Level Segment Level Quantity Level

Prec. Rec. F1 Accuracy Prec. Rec. F1 Accuracy
Model-2K 86.81 86.06 86.44 64.21 92.26 91.43 91.83 69.70
Model-5K 87.02 88.13 87.57 66.27 91.84 93.01 92.42 71.47
Model-full 89.17 89.77 89.47 70.05 93.14 93.78 93.46 74.61
Human 90.74 87.65 89.16 70.94 94.53 91.31 92.89 74.97

a query) into a dense vector and computes their cosine similarity to measure the
similarity between descriptions. Given the vectors of a query and a description
hx, hdi

, their similarity is defined as:

score(x, di) =
hT
x hdi

|hx| · |hdi |

We use contrastive loss for this task, which pulls in the representations of
paraphrases and pushes away the representations of confusing descriptions.

4 Experiments on Description Parsing

We collect a large-scale description parsing dataset in the finance area since they
are replete with quantities, and the quantity searching demand is urgent in this
field. This section focuses on introducing how to collect the dataset and the
challenge of this problem. So, we adopt a de facto standard sequential labeling
model based on BERT and do not compare it with other methods.

4.1 Dataset Collection

We collect 1,612 documents in published Chinese, including annual reports, IPO
prospectuses, bond prospectuses, and industry research reports. They cover 17
out of 20 categories of industry defined in Industrial classification for national
economic activities, such as construction, manufacturing, mining, finance, etc.
Since a document such as an annual report has hundreds of pages, it contains
information not relevant to quantity retrieval, for example, the table of con-
tent, information about the manage teams, etc. So, we focus on chapters mostly
composed of factual quantities, such as “industry status and prospect”. We imple-
ment a rule-based quantity extraction method to extract quantities from these
documents. We only retain sentences that contain at least one quantity. Finally,
42,130 sentences are collected.

We developed a labeling system and trained six in-house annotators to label
each quantity’s description in these sentences manually. Each sentence is labeled
by at least two annotators, and the sentences with conflict results are checked
by a third reviewer. Finally, 112,117 quantities are annotated.

Now, we introduce some detail of the dataset. Among all quantities, 88%
have descriptions, and 12% are not related to a fact thus and do not annotate
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descriptions. The annotated result for each quantity is a set of “segments” in the
sentence, where each segment is a continuous text that describes some aspect of
the quantity. A simple description might include two or three segments, including
the time, the subject, and the performance indicator, such as 2021, Tesla, number
of employees. But there are many quantities with more segments due to more
semantic factors or discontinuous factors, as discussed in Section 7. The average
number of segments in a quantity description is 3.7, and the maximum number
is 10, which indicates that the description can be very complicated.

4.2 Settings

The encoder layer of the model uses BERT [5] and a two-layer Bi-LSTM on top
of it. We concatenate the hidden vectors of the last two layers of the BERT-
base and feed them into Bi-LSTM, whose hidden size is 512. We also add a
dropout layer between Bi-LSTM layers with a ratio of 0.1. We use Adam [11]
as our optimizer with a learning rate of 2e-5. The dataset is split into training,
development, and test sets by 7:1.5:1.5 at the sentence level (so that quantities
in the same sentence are not scattered in both training and test sets).

Since we are using sequential labeling for description parsing, we adopt the
metric from Named Entity Recognition (NER) for evaluation. Each sentence-
quantity pair is regarded as a sample containing several “entities” (segments in
the description). We report the results from two granularity, namely, segment
and quantity levels. At the segment level, we report precision, recall, and F1 to
measure how the model performs at extracting useful text pieces to describe a
quantity. For example, precision is defined as

P =

∑
(s,q)∈D

∑
e∈P (s,q) 1(e ∈ Y (s, q))∑

(s,q) ∈ D|P (s, q)|

where (s, q) is a sentence-quantity pair in dataset D, P (s, q) and Y (s, q) are
entities in prediction and ground truth, and 1(·) is the indicator function that
output 1 if · is true, and 0 otherwise.

At the quantity level, we report accuracy, which is the proportion of quantities
that we correctly extract their description:

Acc =
1

N

∑
(s,q)∈D

1(P (s, q) = Y (s, q)).

Sometimes a minor shift of the boundary of a segment only have a negligible
effect on the result, like adding or removing a preposition. NER tasks also regard
predicted entities that overlap with ground truth entities as partially correct.
So, we also compute the above scores under a “partial ” mode, where a predicted
entity is regarded correct if there exists a ground truth entity, such that the
length of their intersection is more than 1/3 of their union.

4.3 Results

Table 1 reports the results. The segment-level F1 score reaches 89.47, which is
satisfactory. However, the quantity-level accuracy is lower at 70.05.
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This drop reflects the difficulty of description parsing in financial text. A
quantity description often contains multiple segments, and an error in any seg-
ment counts as a failure at the quantity level. The challenge is also evident in
human annotations. Each quantity has two annotations; we treat one as “ground
truth” and the other as “prediction” to estimate human performance, shown as
“Human” in Table 1. Despite training and daily meetings, annotators had varied
interpretations—particularly on ellipsis, and inclusion of verbs or prepositions.
To ensure consistency, a senior annotator resolved all conflicts. Thus, the training
data is more consistent than the raw human agreement score suggests.

To test data efficiency, we trained models on 5K and 2K sentence subsets
(Model-5K and Model-2K). Even with 2K sentences, the model achieved 86.44
F1, just 3 points below full-data training. As expected, performance improves
with more data.

As shown in the next section, even models with modest quantity-level accu-
racy can substantially enhance retrieval.

5 Experiments on Quantity Retrieval

5.1 Dataset Collection

Quantity Description Corpus Cq. Based on the description parsing model
in Section 4, we collect a large dataset for the quantity retrieval task. 8,845
documents are collected and filtered as in Section 4, and there are 635,194 sen-
tences left. We apply the description parsing model to the resultant sentences
and 2,999,378 quantities are parsed with descriptions.

Paraphrase Dataset and Ranking model. We construct a paraphrase
dataset using our proposed Value-Coincidence weak supervision method and the
quantity description corpus.

We split Cq into training and test dataset by documents. Specifically, we
select 70% documents as training dataset Dtr, generate queries and paraphrases
in Dtr, 30% documents as test corpus Dte, generate queries in Dte and find
paraphrases in Dtr ∪ Dte. Finally, we generate 188,108 high quality queries,
12,042,951 BM25 results, and find 59,568 paraphrase pairs (many queries not
find any paraphrases).

We fine-tune a BERT model [5] (bert-base-chinese) using S-BERT’s imple-
mentation [18], using online contrastive loss, with cosine similarity distance and
0.5 margin. We down-sample the negative samples so that each epoch samples at
most 5 negative results for each query. The learning rate, batch size, and train-
ing epoch are 2e-5, 120, and 20. On the test dataset, its F1 score, precision, and
recall are 0.82, 0.85, and 0.78 respectively. Notice that this result is evaluated
on the down-sampled test set.

5.2 Settings

The following methods are compared for quantity retrieval:

– Cs-BM25: BM25 method on sentence corpus Cs, where a record in the corpus
is a sentence.
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– Cq-BM25: BM25 method on quantity description corpus Cq.
– Cq-BERT: S-BERT method on Cq using BERT (bert-base-chinese) with no fine

tuning.
– Cq-BERT-P: S-BERT method on Cq using a multilingual model fine-tuned on

other paraphrase detection datasets (paraphrase-multilingual-mpnet-base-v2).
– Cq-BERT-WS: S-BERT method on Cq trained on our proposed weak supervised

dataset (the ranking model in the previous subsection).

Mean pooling is used to get a fixed-length vector representation for BERT-based
methods.

5.3 Evaluation Method

Automatically generated Test Set. We use the descriptions in the test
dataset of the ranking model for evaluation. We remove them from the Cq cor-
pus to avoid trivial results that return the query itself. For a query (di, qi) and
a result (dj , qj) in the result list, we set its label as relevant if qj is the same
as qj . The Cs-BM25 method retrieves at the sentence level, we traverse all the
quantities in the sentence, and if any quantity has the same value as qi, we set
the sentence as relevant. So, Cs-BM25 has an advantage over Cq-based methods
on the evaluation method. As we discussed before, the chance that two irrel-
evant descriptions have the same quantity value is small, the relevance judge
result is acceptable. And because the chance is random, it is fair for all methods
compared. We pool the results of all methods before evaluation to make a fair
comparison. That is, we merge the relevant results of all methods as the relevant
result set for each query. We only retain queries that have at least one relevant
result after pooling for evaluation.

Manually Annotated Test Set. We randomly select 291 queries and their
pooling results (all relevant results and part of irrelevant results) and manually
annotate their relevance for evaluation.

Then, we introduce the evaluation metrics. As mentioned above, for a query,
each element in the retrieved list has a binary relevant label. We use R(q) to
denote the relevance result corresponding to query q, where Ri(q) is 1 if the
i-th element is in fact relevant and 0 otherwise, R1:n(q) = {R1(q), ..., Rn(q)}.
Denoting all queries in the test set as Q. What we are concerned about most is
whether the expected quantity exists in the list, especially at the top of the list.
So, we define Exist@n as:

Exist@n =

∑
q∈Q 1(1 ∈ R1:n(q))

|Q|

While Exist@n measures the existence of the expected quantity in the result,
we also want to measure whether relevant results are ranked high. The MAP@n
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is used to measure this, defined as:

MAP@n =

∑
q∈Q AP@n(q)

|Q|

AP@n(q) =

∑n
i=1 P@i(q)×Ri(q)∑n

k=1 Rk(q)

P@n(q) =

∑n
i=1 Ri(q)

n
.

Another similar measure is nDCG, defined as:

nDCG@n =

∑
q∈Q nDCG@n(q)

|Q|
nDCG@n(q) = DCG@n(q)/IDCG@n(q)

DCG@n(q) =

n∑
i=1

Ri(q)

log2(i+ 1)

IDCG@n(q) =

|REL@n|∑
i=1

1

log2(i+ 1)

where |REL@n| is the number of relevant results in the corpus up to position n.

5.4 Results

Table 2. Results on Quantity Retrieval

Automatically Generated Test Set Manually Annotated Test Set

Exist@1 Exist@10 MAP@10 nDCG@10 Exist@1 Exist@10 MAP@10 nDCG@10
Cs-BM25 0.3098 0.5861 0.2858 0.3521 0.2203 0.4153 0.2071 0.2380
Cq-BM25 0.5802 0.7787 0.5064 0.5883 0.4322 0.5847 0.3526 0.4221
Cq-BERT 0.5171 0.7021 0.4266 0.5030 0.4407 0.5508 0.3164 0.3890
Cq-BERT-P 0.5458 0.7437 0.4620 0.5432 0.4407 0.6102 0.3607 0.4272
Cq-BERT-WS 0.6466 0.7839 0.5862 0.6575 0.5000 0.6017 0.4436 0.5004

The results are shown in Table 2. We first discuss the results on the weakly
supervised test set and then the results on the manually annotated test set.

The Effect of Description Parsing. We compare the results of Cs-BM25
and Cq-BM25 to illustrate the improvement brought by description parsing. Our
proposed parsing-based Cq-BM25 method is significantly better than Cs-BM25
on all metrics. It returns the correct quantity at the top position (Exist@1) on
58% of cases, which achieves an over 90% relative improvement compared with
Cs-BM25. This indicates that retrieving a quantity using its description requires
an understanding of its semantic meaning.

A case is shown in Figure 3 to illustrate this. Cq-BM25 returns the correct
result on the top. Cs-BM25 returns a wrong result on the top, and the correct



12 Cao et al.

Fig. 3. A case on which Cq-BM25 return the correct result at top but Cs-BM25 ranks
it after a wrong result.

Fig. 4. Two cases on which Cq-BERT-WS performs better than Cq-BM25 when com-
paring their top results.

one is ranked in the second position. This is because the sentence in the first
result includes all the query terms, and important terms like “IC” are repeated
multiple times. But the quantities in this sentence are about the Chinese market
(highlighted in the figure) although the term “global” appears in the sentence. For
Cq-BM25, the descriptions of these quantities do not contain the term “global”,
thus are ranked lower.

The Effect of Weak Supervision. We compare the results of Cq-BM25
and Cq-BERT-WS. It shows that training a neural network model using the
proposed value-coincidence weak supervision method can further bring a 6%
absolute improvement on Exist@1. This means the ranking model can learn
paraphrase information from the weak supervision dataset.

Two cases are shown in Figure 4 to illustrate this. Each case shows its query
and the top-ranked result for each method. In the first case, Cq-BERT-WS is
able to infer that “construction decoration industry” is the same as “decoration
industry”, “total project value” is the same “total value” in this industry, and this
is usually a nationwide industry statistic if not specified, thus adding “China”
does not influence its meaning (since this is a Chinese annual report corpus).
The top result of Cq-BM25 includes all the terms in the query, so it gets a
high score. But these terms are followed by a more specific phrase, indicating it
only measures a part of the decoration industry: the residential decoration sub-
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industry (there are other sub-industries like public building decoration). In the
second case, the query includes an unnecessary term “39 thousand” which is the
number of textile enterprises above the designated size. Cq-BERT-WS is able to
learn that this term is not important. But since this term appears rarely in the
dataset, but financial indicators like total profit and income from main business
appear frequently in this annual report corpus, Cq-BM25 give more weights on
the term “39 thousand” thus return the wrong description as the top result.
These cases illustrate the effect of weak supervision on understanding what is a
paraphrase.

We also compare Cq-BERT-WS with Cq-BERT and Cq-BERT-P. The latter
two perform worse than Cq-BERT-WS and even worse than Cq-BM25. This means
the improvement comes from the weakly supervised dataset, rather
than the knowledge in the pre-trained language model. We think Cq-BERT-P
performs worse than Cq-BERT because the fine-tuning datasets have different
distributions with this application.

Notice that, the improvement of Cq-BERT-WS on Exist@10 to Cq-BM25 is
marginal compared with the improvement on other metrics. It indicates that
Cq-BM25 can recall most cases if we go down the result list, although they are
ranked after some confusing descriptions. And the fact that both of them perform
better than Cs-BM25 reflects the effectiveness of description parsing.

Table 3. The “win-matrix” measuring the percentage of winning cases between model
pairs (on nDCG)

Cs-
BM25

Cq-
BM25

Cq-
BERT

Cq-
BERT-P

Cq-
BERT-WS

Cs-BM25 10% 18% 12% 8%
Cq-BM25 44% 20% 15% 5%
Cq-BERT 40% 14% 12% 6%
Cq-BERT-P 44% 19% 24% 6%
Cq-BERT-WS 45% 31% 32% 29%

Results on Manually Annotated Test Set. The results on the manually
annotated test set are similar to the automatically generated test set: Cq-BERT-
WS performs better than Cq-BM25, and Cq-BM25 performs better than Cs-BM25.
But the scores of all these methods are dropped. This is because the manually
annotated test set is more strict on deciding what is a relevant result. We also
compute a “win-matrix” W on this dataset, where Wij is the percentage of the
cases that the i-th method performs better than the j-th method on nDCG.
Table 3 shows the result. We can see that Cq-BERT-WS performs better on
most samples. We manually check the samples on which Cq-BERT-WS performs
worse than Cs-BM25 and find most of them are due to description parsing errors.

6 Related Work

We categorize related work into two areas: quantity-based information retrieval
and information extraction.
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Quantity retrieval. Banerjee et al. [1] introduced quantity consensus queries,
where each query returns a quantity interval (e.g., “driving time from Paris to
Nice” → 15–20 minutes). Their method ranks intervals using surrounding snip-
pets as feature vectors, akin to our sentence-based baseline, but lacks deep se-
mantic understanding.

Sarawagi and Chakrabarti [20] addressed quantity retrieval in web tables,
assuming semantics are conveyed via row/column headers. They also proposed
a consensus-based reranking model. In contrast, our work handles unstructured
text, which poses greater semantic challenges and allows broader application.

Ho et al. [8, 9] developed Qsearch for entity retrieval under quantity con-
straints (e.g., “hybrid cars under 35,000 Euros”), while Li et al. [14] proposed
AnaSearch for answering analytical questions over COVID-19 data (e.g., “total
deaths in Italy by April 21st”). Both use syntactic parsing for structure, whereas
we apply deep learning for richer representation learning.

Quantity understanding. Lamm et al. [12] proposed a semantic role la-
beling schema for financial quantities, identifying 11 distinct roles but lacking
data or experiments. Saha et al. [19] introduced BONIE, a bootstrapped Open
IE system for extracting tuples with numeric arguments, relying on syntactic
patterns that struggle with complex expressions.

Thawani et al. [21] surveyed numeric representation in NLP across tasks like
arithmetic [6], numeration [15], comparison [22], and math word problems [7, 4,
23], discussing methods for encoding and decoding numbers in text.

In summary, while prior work has addressed quantities in both structured
and unstructured data, we are the first to formally study quantity retrieval from
text via natural language queries.

7 Discussion

Limitations and future work. Our framework for quantity retrieval is pre-
liminary, and each module has room for improvement. We highlight two key
directions:

First, quantity understanding could benefit from the advances of large lan-
guage models (LLMs), and replacing our BERT-based parsing method with
LLMs [16, 2] may improve the overall performance of our framework. Moreover,
descriptive factors may span sentences or even paragraphs, requiring document-
level information extraction [26, 24].

Second, paraphrase detection is vital for retrieval. We proposed a basic
weakly supervised method based on value overlap. Future work could explore
abbreviation resolution and learning from noisy weak labels[17].

8 Conclusion

In this paper, we propose the task of quantity retrieval from text. This paper
argues that this task requires a semantic understanding of quantities. By analyz-
ing the challenge, we propose a description parsing-based framework with weak
supervision, which significantly outperforms the sentence-based framework. We
also summarize some of the future research directions on this task.
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